Mathematische Annalen

, Volume 374, Issue 1–2, pp 447–474 | Cite as

Primes in short intervals on curves over finite fields

  • Efrat Bank
  • Tyler FosterEmail author


We prove an analogue of the Prime Number Theorem for short intervals on a smooth projective geometrically irreducible curve of arbitrary genus over a finite field. A short interval “of size E” in this setting is any additive translate of the space of global sections of a sufficiently positive divisor E by a suitable rational function f. Our main theorem gives an asymptotic count of irreducible elements in short intervals on a curve in the “large q” limit, uniformly in f and E. This result provides a function field analogue of an unresolved short interval conjecture over number fields, and extends a theorem of Bary-Soroker, Rosenzweig, and the first author, which can be understood as an instance of our result for the special case of a divisor E supported at a single rational point on the projective line.



The authors would like to thank Lior Bary-Soroker and Michael Zieve for many conversations during our work on this paper that were crucial to its success. We also extend a warm thank you to Jeff Lagarias for comments on a draft of the paper and for his assistance in formulating prime density theorems in number fields. The exposition benefited greatly from an invitation to speak at the Palmetto Number Theory Series, held at the University of South Carolina and organized by Matthew Boylan, Michael Filaseta, and Frank Thorne, and from an invitation by Jordan Ellenberg to speak in the Number Theory Seminar at the University of Wisconsin– Madison. We are especially thankful to Brian Conrad for looking closely at an earlier version of this paper, for pointing out a gap in our uniformity argument (now filled), for pointing out that we needed to prove what is now Proposition 3.10, and for suggesting that we use [5, §1, Lemma 1.5] to do so. The authors conducted the research that lead to this paper while at the University of Michigan and while the second author was a visiting researcher at L’Institut des Hautes Études Scientifiques, at L’Institut Henri Poincaré, and at the Max Planck Institute for Mathematics. We thank all four institutions for their hospitality. The first author was partially supported by Michael Zieve’s NSF Grant DMS-1162181. Support for the second author came from NSF RTG Grant DMS-0943832 and from Le Laboratoire d’Excellence CARMIN.


  1. 1.
    Balog, A., Ono, K.: The Chebotarev density theorem in short intervals and some questions of Serre. J. Number Theory 91(2), 356–371 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bank, E., Bary-Soroker, L., Rosenzweig, L.: Prime polynomials in short intervals and in arithmetic progressions. Duke Math. J. 164(2), 277–295 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bary-Soroker, L.: Irreducible values of polynomials. Adv. Math. 229(2), 854–874 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cohen, S.D.: Uniform distribution of polynomials over finite fields. J. Lond. Math. Soc. 2(6), 93–102 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Freitag, E., Kiehl, R.: Étale cohomology and the Weil conjecture, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 13 [Results in Mathematics and Related Areas (3)]. Springer, Berlin (1988) (Translated from the German by Betty S. Waterhouse and William C. Waterhouse, With an historical introduction by J. A. Dieudonné)Google Scholar
  6. 6.
    Fulton, W.: Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 2. 3. Folge. A Series of Modern Surveys in Mathematics, 2nd edn. [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Berlin (1998)Google Scholar
  7. 7.
    Granville, A.: Unexpected irregularities in the distribution of prime numbers. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2 (Zürich, 1994), pp. 388–399. Birkhäuser, Basel (1995)Google Scholar
  8. 8.
    Granville, A.: Different approaches to the distribution of primes. Milan J. Math. 78(1), 65–84 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Grenié, L., Molteni, G., Perelli, A.: Primes and prime ideals in short intervals. ArXiv e-prints (2016)Google Scholar
  10. 10.
    Grothendieck, A.: Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II. Inst. Hautes Études Sci. Publ. Math. 17, 91 (1963)Google Scholar
  11. 11.
    Grothendieck, A.: Éléments de géométrie algébrique. IV. étude locale des schémas et des morphismes de schémas IV. Inst. Hautes Études Sci. Publ. Math. 32, 361 (1967)Google Scholar
  12. 12.
    Harder, G.: Lectures on algebraic geometry II. Aspects of Mathematics, E39. Vieweg + Teubner, Wiesbaden (2011). Basic concepts, coherent cohomology, curves and their JacobiansGoogle Scholar
  13. 13.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, No. 52. Springer, New York (1977)Google Scholar
  14. 14.
    Heath-Brown, D.R.: On the density of the zeros of the Dedekind zeta-function. Acta Arith. 33(2), 169–181 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Heath-Brown, D.R.: The number of primes in a short interval. J. Reine Angew. Math. 389, 22–63 (1988)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Huxley, M.N.: On the difference between consecutive primes. Invent. Math. 15, 164–170 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Katz, N.M.: Pinceaux de Lefschetz: Théoreme d’existence. Sem. Geom. algebrique Bois-Marie 1967–1969, SGA 7 II, Lect. Notes Math. 340, Expose XVII, pp. 212–253 (1973)Google Scholar
  18. 18.
    Keating, J.P., Rudnick, Z.: The variance of the number of prime polynomials in short intervals and in residue classes. Int. Math. Res. Not. IMRN 1, 259–288 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lagarias, J.C., Odlyzko, A.M.: Effective versions of the Chebotarev density theorem. In: Algebraic Number Fields: \(L\)-functions and Galois Properties (Proc. Sympos., Univ. Durham, Durham, 1975), pp. 409–464. Academic Press, London (1977)Google Scholar
  20. 20.
    Landau, E.: Ueber die zu einem algebraischen Zahlkörper gehörige Zetafunction und die Ausdehnung der Tschebyschefschen Primzahlentheorie auf das Problem der Vertheilung der Primideale. J. Reine Angew. Math. 125, 64–188 (1903)MathSciNetGoogle Scholar
  21. 21.
    Lang, S., Weil, A.: Number of points of varieties in finite fields. Am. J. Math. 76, 819–827 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Maier, H.: Primes in short intervals. Mich. Math. J. 32(2), 221–225 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Milne, J.S.: Étale Cohomology, Princeton Mathematical Series, vol. 33. Princeton University Press, Princeton (1980)Google Scholar
  24. 24.
    Mitsui, T.: On the prime ideal theorem. J. Math. Soc. Jpn. 20(1–2), 233–247, 04 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers. Springer Monographs in Mathematics, 3rd edn. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  26. 26.
    Roman, S.: Field Theory, 2nd edn. Graduate Texts in Mathematics, vol. 158. Springer, New York (2006)Google Scholar
  27. 27.
    Rosen, M.: Number Theory in Function Fields, Graduate Texts in Mathematics, vol. 210. Springer, New York (2002)CrossRefGoogle Scholar
  28. 28.
    Serre, J.-P.: Topics in Galois Theory, 2nd edn. Research Notes in Mathematics, vol. 1. A K Peters, Ltd., Wellesley (2008). With notes by Henri DarmonGoogle Scholar
  29. 29.
    Szamuely, T.: Galois Groups and Fundamental Groups, Cambridge Studies in Advanced Mathematics, vol. 117. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  30. 30.
    The Stacks Project Authors. Stacks Project. Accessed Nov 2018 (2018)

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversity of MichiganAnn ArborUSA
  2. 2.Florida State University Mathematics DepartmentTallahasseeUSA

Personalised recommendations