Advertisement

Mathematische Annalen

, Volume 362, Issue 3–4, pp 1055–1105 | Cite as

Acylindrical hyperbolicity of groups acting on trees

  • Ashot MinasyanEmail author
  • Denis Osin
Article

Abstract

We provide new examples of acylindrically hyperbolic groups arising from actions on simplicial trees. In particular, we consider amalgamated products and HNN-extensions, one-relator groups, automorphism groups of polynomial algebras, \(3\)-manifold groups and graph products. Acylindrical hyperbolicity is then used to obtain some results about the algebraic structure, analytic properties and measure equivalence rigidity of groups from these classes.

Mathematics Subject Classification

Primary 20F67 20F65 20E08 Secondary 20E34 20E06 57M05 

Notes

Acknowledgments

The authors would like to thank Henry Wilton for helpful discussions of \(3\)-manifolds. We are also grateful to Jack Button for his valuable comments, and to Stephane Lamy for pointing out an error in an earlier version of the paper. Finally, we would like to thank the referee for a careful reading of this article.

References

  1. 1.
    Agol, I.: The virtual Haken conjecture. With an appendix by I. Agol, D. Groves and J. Manning. Doc. Math. 18, 1045–1087 (2013)MathSciNetGoogle Scholar
  2. 2.
    Antolín, Y., Minasyan, A.: Tits alternatives for graph products. J. Reine Angew. Math., to appear. arXiv:1111.2448
  3. 3.
    Antolín, Y., Minasyan, A., Sisto, A.: Commensurating endomorphisms of acylindrically hyperbolic groups and applications. Preprint (2013). arXiv:1310.8605
  4. 4.
    Arzhantseva, G., Minasyan, A., Osin, D.: The \(SQ\)-universality and residual properties of relatively hyperbolic groups. J. Algebra 315(1), 165–177 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Aschenbrenner, M., Friedl, S., Wilton, H.: \(3\)-manifold groups. Preprint (2012). arXiv:1205.0202
  6. 6.
    Ballmann, W.: Nonpositively curved manifolds of higher rank. Ann. Math. 122(3), 597–609 (1985)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ballmann, W.: Lectures on spaces of nonpositive curvature. With an appendix by Misha Brin. DMV Seminar 25, Birkhäuser Verlag, Basel, (1995). viii+112 ppGoogle Scholar
  8. 8.
    Ballmann, W., Buyalo, S.: Periodic rank one geodesics in Hadamard spaces. Geometric and probabilistic structures in dynamics. Contemp. Math. 469, 19–27 (2008)Google Scholar
  9. 9.
    Bardakov, V.G., Neshchadim, M., Sosnovsky, Y.: Groups of triangular automorphisms of a free associative algebra and a polynomial algebra. J. Algebra 362, 201–220 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bass, H.: Covering theory for graphs of groups. J. Pure Appl. Algebra 89, 3–47 (1993)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bass, H.: Some remarks on group actions on trees. Commun. Algebra 4(12), 1091–1126 (1976)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bédos, E., de la Harpe, P.: Moyennabilité intérieure des groupes: définitions et exemples. Enseign. Math. 32(1–2), 139–157 (1986)MathSciNetGoogle Scholar
  13. 13.
    Behrstock, J., Charney, R.: Divergence and quasimorphisms of right-angled Artin groups. Math. Ann. 352(2), 339–356 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Behrstock, J., Neumann, W.: Quasi-isometric classification of graph manifold groups. Duke Math. J. 141(2), 217–240 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Behrstock, J., Neumann, W.: Quasi-isometric classification of non-geometric 3-manifold groups. J. Reine Angew. Math. 669, 101–120 (2012)MathSciNetGoogle Scholar
  16. 16.
    Bestvina, M., Bromberg, K., Fujiwara, K.: Bounded cohomology via quasi-trees. Preprint (2013). arXiv:1306.1542
  17. 17.
    Bestvina, M., Fujiwara, K.: Bounded cohomology of subgroups of mapping class groups. Geom. Topol. 6, 69–89 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Bowditch, B.: Intersection numbers and the hyperbolicity of the curve complex. J. Reine Angew. Math. 598, 105–129 (2006)MathSciNetGoogle Scholar
  19. 19.
    Brin, M.G.: Seifert fibered 3-manifolds. Lecture notes, Binghamton University, 1993. arXiv:0711.1346
  20. 20.
    Burger, M., Mozes, S.: Lattices in product of trees. IHES Publ. Math. 92, 151–194 (2000)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Burns, K., Spatzier, R.: Manifolds of nonpositive curvature and their buildings. IHES Publ. Math. 65(65), 35–59 (1987)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Camm, R.: Simple free products. J. Lond. Math. Soc. 28, 66–76 (1953)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Cantat, S., Lamy, S.: Normal subgroups in the Cremona group. With an appendix by Yves de Cornulier. Acta Math. 210(1), 31–94 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Chifan, I., Sinclair, T.: On the structural theory of II\(_1\) factors of negatively curved groups. Ann. Sci. Éc. Norm. Supér. 46(1), 1–33 (2013)MathSciNetGoogle Scholar
  25. 25.
    Chifan, I., Sinclair, T., Udrea, B.: On the structural theory of \({\rm II}_1\) factors of negatively curved groups, II. Actions by product groups. Adv. Math. 245, 208–236 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Collins, D.J.: Intersections of Magnus subgroups of one-relator groups. Groups: topological, combinatorial and arithmetic aspects, 255–296, London Math. Soc. Lecture Note Series, 311, Cambridge University Press, Cambridge, (2004)Google Scholar
  27. 27.
    Culler, M., Morgan, J.W.: Group actions on \(\mathbb{R}\)-trees. Proc. Lond. Math. Soc. 55(3), 57–604 (1987)MathSciNetGoogle Scholar
  28. 28.
    Czerniakiewicz, A.: Automorphisms of a free associative algebra of rank \(2\) II. Trans. Am. Math. Soc. 171, 309–315 (1972)MathSciNetGoogle Scholar
  29. 29.
    Dahmani, F., Guirardel, V., Osin, D.: Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces. Preprint (2011). arXiv:1111.7048v3
  30. 30.
    Dicks, W.: Automorphisms of the polynomial ring in two variables. Publ. Sec. Math. Univ. Autòn. Barc. 27(1), 155–162 (1983)MathSciNetGoogle Scholar
  31. 31.
    Dicks, W., Dunwoody, M.J.: Groups Acting on Graphs. Cambridge Studies in Advanced Mathematics, vol. 17. Cambridge University Press, Cambridge (1989). xvi+283 ppGoogle Scholar
  32. 32.
    Drutu, C., Sapir, M.: Relatively hyperbolic groups with rapid decay property. Int. Math. Res. Not., (19) 1181–1194 (2005)Google Scholar
  33. 33.
    Effros, E.G.: Property \(\Gamma \) and inner amenability. Proc. Am. Math. Soc. 47, 483–486 (1975)MathSciNetGoogle Scholar
  34. 34.
    Epstein, D.B.A.: Projective planes in 3-manifolds. Proc. LMS 11(3), 469–484 (1961)Google Scholar
  35. 35.
    Farb, B.: Relatively hyperbolic groups. Geom. Funct. Anal. 8(5), 810–840 (1998)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Furman, A.: A survey of measured group theory. Geometry, rigidity, and group actions, 296–374. Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, (2011)Google Scholar
  37. 37.
    Furter, J-Ph, Lamy, S.: Normal subgroup generated by a plane polynomial automorphism. Transform. Groups 15(3), 577–610 (2010)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Gitik, R., Mitra, M., Rips, E., Sageev, M.: Widths of subgroups. Trans. Am. Math. Soc. 350(1), 321–329 (1998)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Green, E.R.: Graph products. Ph.D. thesis, University of Leeds, 1990. http://etheses.whiterose.ac.uk/236/
  40. 40.
    Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory, MSRI Series, vol. 8, pp. 75–263. Springer, New York (1987)CrossRefGoogle Scholar
  41. 41.
    Haglund, F., Wise, D.: Special cube complexes. Geom. Funct. Anal. 17(5), 1551–1620 (2008)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Hamann, M.: Group actions on metric spaces: fixed points and free subgroups. Preprint (2013). arXiv:1301.6513
  43. 43.
    Hamenstädt, U.: Bounded cohomology and isometry groups of hyperbolic spaces. J. Eur. Math. Soc. 10(2), 315–349 (2008)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Hempel, J.: \(3\)-Manifolds. Ann. Math. Studies, vol. 86. Princeton University Press, Princeton (1976)Google Scholar
  45. 45.
    Hermiller, S., Meier, J.: Algorithms and geometry for graph products of groups. J. Algebra 171(1), 230–257 (1995)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Higman, G., Neumann, B.H., Neumann, H.: Embedding theorems for groups. J. Lond. Math. Soc. 24, 247–254 (1949)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Hsu, T., Wise, D.T.: On linear and residual properties of graph products. Mich. Math. J. 46, 251–259 (1999)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Hull, M.: Small cancellation in acylindrically hyperbolic groups. Preprint (2013). arXiv:1308.4345
  49. 49.
    Hull, M.: Conjugacy growth in polycyclic groups. Arch. Math. 96(2), 131–134 (2011)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Hull, M., Osin, D.: Induced quasi-cocycles on groups with hyperbolically embedded subgroups. Algebr. Geom. Topol 13, 2635–2665 (2013)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Hull, M., Osin, D.: Conjugacy growth of finitely generated groups. Adv. Math. 235, 361–389 (2013)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Januszkiewicz, T.: J. Świa̧tkowski, Commensurability of graph products. Algebr. Geom. Topol. 1, 587–603 (2001)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Jung, H.W.E.: Über ganze birationale transformationen der Ebene. J. Reine Angew. Math. 184, 161–174 (1942)MathSciNetGoogle Scholar
  54. 54.
    Kapovich, I., Myasnikov, A.: Stallings foldings and subgroups of free groups. J. Algebra 248(2), 608–668 (2002)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Kapovich, M.: Hyperbolic manifolds and discrete groups. Progress in Mathematics, 183. Birkhäuser Boston Inc., Boston, MA, (2001). xxvi+467 ppGoogle Scholar
  56. 56.
    Lück, W.: \(L^2\)-invariants: theory and applications to geometry and K-theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 44, Springer, Berlin (2002)Google Scholar
  57. 57.
    Lück, W., Osin, D.: Approximating the first \(L^2\)-betti number of residually finite groups. J. Topol. Anal. 3(2), 153–160 (2011)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89. Springer, Berlin (1977). xiv+339 ppGoogle Scholar
  59. 59.
    Makar-Limanov, L.G.: The automorphisms of the free algebra with two generators (in Russian). Funkcional. Anal. i Prilozen. 4(3), 107–108 (1970)MathSciNetGoogle Scholar
  60. 60.
    Makar-Limanov, L., Turusbekova, U., Umirbaev, U.: Automorphisms and derivations of free Poisson algebras in two variables. J. Algebra 322(9), 3318–3330 (2009)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Manning, J.F.: Geometry of pseudocharacters. Geom. Topol. 9, 1147–1185 (2005)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Minasyan, A.: Some properties of subsets of hyperbolic groups. Commun. Algebra 33(3), 909–935 (2005)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Minasyan, A., Osin, D.: Normal automorphisms of relatively hyperbolic groups. Trans. Am. Math. Soc. 362, 6079–6103 (2010)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Monod, N.: An invitation to bounded cohomology. International Congress of Mathematicians, Vol. II, pp. 1183–1211, Eur. Math. Soc., Zürich, (2006)Google Scholar
  65. 65.
    Monod, N., Shalom, Y.: Orbit equivalence rigidity and bounded cohomology. Ann. Math. 164(3), 825–878 (2006)MathSciNetCrossRefGoogle Scholar
  66. 66.
    Murasugi, K.: The center of a group with a single defining relation. Math. Ann. 155, 246–251 (1964)MathSciNetCrossRefGoogle Scholar
  67. 67.
    Nagata, M.: On automorphism group of k[x, y]. Lectures in Mathematics, Department of Mathematics, Kyoto University, no. 5, Kinokuniya Book-Store, Tokyo, (1972). v+53 ppGoogle Scholar
  68. 68.
    Neumann, P.M.: The SQ-universality of some finitely presented groups. Collection of articles dedicated to the memory of Hanna Neumann I. J. Aust. Math. Soc. 16, 1–6 (1973)CrossRefGoogle Scholar
  69. 69.
    Neumann, W.D.: On intersections of finitely generated subgroups of free groups. Groups-Canberra 1989, 161–170, Lecture Notes in Mathematics, 1456, Springer, Berlin, (1990)Google Scholar
  70. 70.
    Olshanskii, AYu., Sapir, M.V.: Non-amenable finitely presented torsion-by-cyclic groups. Publ. IHES 96, 43–169 (2002)MathSciNetCrossRefGoogle Scholar
  71. 71.
    Osin, D.: Acylindrically hyperbolic groups. Preprint (2013). arXiv:1304.1246
  72. 72.
    Osin, D.: \(L^2\)-Betti numbers and non-unitarizable groups without free subgroups. Int. Math. Res. Not. (22), 4220–4231, (2009)Google Scholar
  73. 73.
    Osin, D.: Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems. Memoirs AMS 179(843), (2006)Google Scholar
  74. 74.
    Osin, D.: Asymptotic dimension of relatively hyperbolic groups. Int. Math. Res. Not. (35), 2143–161, (2005)Google Scholar
  75. 75.
    Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. Preprint (2002). arXiv:math.DG/0211159
  76. 76.
    Perelman, G.: Ricci flow with surgery on three-manifolds. Preprint (2003). arXiv:math.DG/0303109
  77. 77.
    Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. Preprint (2003). arXiv:math.DG/0307245
  78. 78.
    Pietrowski, A.: The isomorphism problem for one-relator groups with non-trivial centre. Math. Z. 136, 95–106 (1974)MathSciNetCrossRefGoogle Scholar
  79. 79.
    Sacerdote, G.S.: SQ-universal \(1\)-relator groups. Conf. Group Theory, Univ. Wisconsin-Parkside 1972, Lecture Notes in Mathematics, 319, p. 168. Springer, Berlin, (1973). iv+188 ppGoogle Scholar
  80. 80.
    Sacerdote, G.S., Schupp, P.E.: SQ-universality in HNN groups and one relator groups. J. Lond. Math. Soc. 7, 733–740 (1974)MathSciNetCrossRefGoogle Scholar
  81. 81.
    Schupp, P.E.: A survey of SQ-universality. Conference on Group Theory (Univ. Wisconsin-Parkside, Kenosha, Wis., 1972), pp. 183–188. Lecture Notes in Mathematics, 319 (1973), Springer, BerlinGoogle Scholar
  82. 82.
    Schupp, P.: Small cancellation theory over free products with amalgamation. Math. Ann. 193, 255–264 (1971)MathSciNetCrossRefGoogle Scholar
  83. 83.
    Scott, P.: The geometries of 3-manifolds. Bull. Lond. Math. Soc. 15, 401–487 (1983)CrossRefGoogle Scholar
  84. 84.
    Scott, P.: Compact submanifolds of 3-manifolds. J. Lond. Math. Soc. 7, 246–250 (1973)CrossRefGoogle Scholar
  85. 85.
    Sela, Z.: Acylindrical accessibility for groups. Invent. Math. 129(3), 527–565 (1997)MathSciNetCrossRefGoogle Scholar
  86. 86.
    Serre, J.-P.: Trees. Translated from the French original by J. Stillwell. Corrected 2nd printing of the 1980 English translation. Springer Monographs in Mathematics. Springer, Berlin, (2003), x+142 ppGoogle Scholar
  87. 87.
    Sisto, A.: Contracting elements and random walks. Preprint (2011). arXiv:1112.2666
  88. 88.
    Thom, A.: Low degree bounded cohomology and \(L^2\)-invariants for negatively curved groups. Groups Geom. Dyn. 3(2), 343–358 (2009)MathSciNetCrossRefGoogle Scholar
  89. 89.
    Tits, J.: Sur le groupe des automorphismes d’un arbre. (French) Essays on topology and related topics (Mémoires dédiés à Georges de Rham), pp. 188–211. Springer, New York, (1970)Google Scholar
  90. 90.
    van der Kulk, W.: On polynomial rings in two variables. Nieuw Arch. Wiskd. 1(3), 33–41 (1953)Google Scholar
  91. 91.
    Wilton, H., Zalesskii, P.: Profinite properties of graph manifolds. Geom. Dedicata 147, 29–45 (2010)MathSciNetCrossRefGoogle Scholar
  92. 92.
    Wise, D.T.: The structure of groups with a quasiconvex hierarchy. Preprint (2011). http://www.math.mcgill.ca/wise/papers.html
  93. 93.
    Wright, D.: Two-dimensional Cremona groups acting on simplicial complexes. Trans. Am. Math. Soc. 331(1), 281–300 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Mathematical SciencesUniversity of Southampton, HighfieldSouthamptonUK
  2. 2.Department of MathematicsVanderbilt UniversityNashvilleUSA

Personalised recommendations