Advertisement

Homogenization of Parabolic Equations with Non-self-similar Scales

  • Jun Geng
  • Zhongwei ShenEmail author
Article
  • 28 Downloads

Abstract

This paper is concerned with quantitative homogenization of second-order parabolic systems with periodic coefficients varying rapidly in space and time, in non-self-similar scales. The homogenization problem involves two oscillating scales. We obtain large-scale interior and boundary Lipschitz estimates as well as interior \(C^{1, \alpha }\) and \(C^{2, \alpha }\) estimates by utilizing higher-order correctors. We also investigate the problem of convergence rates for initial-boundary value problems.

Mathematics Subject Classification

35B27 35K40 

Notes

Acknowledgements

Both authors thank the anonymous referees for their very helpful comments, corrections, and suggestions.

Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interest.

References

  1. 1.
    Allaire, G., Briane, M.: Multiscale convergence and reiterated homogenisation. Proc. R. Soc. Edinb. Sect. A126(2), 297–342, 1996MathSciNetCrossRefGoogle Scholar
  2. 2.
    Armstrong, S.N., Bordas, A., Mourrat, J.-C.: Quantitative stochastic homogenization and regularity theory of parabolic equations. Anal. PDE11(8), 1945–2014, 2018MathSciNetCrossRefGoogle Scholar
  3. 3.
    Armstrong, S.N., Kuusi, T., Mourrat, J.-C.: Mesoscopic higher regularity and subadditivity in elliptic homogenization. Commun. Math. Phys. 347(2), 315–361, 2016ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Armstrong, S.N., Kuusi, T., Mourrat, J.-C.: The additive structure of elliptic homogenization. Invent. Math. 208(3), 999–1154, 2017ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Armstrong, S.N., Kuusi, T., Mourrat, J.-C.: Quantitative Stochastic Homogenization and Large-Scale Regularity. Grundlehren der mathematischen Wissenschaften, vol. 352. Springer, Berlin 2019CrossRefGoogle Scholar
  6. 6.
    Armstrong, S.N., Mourrat, J.-C.: Lipschitz regularity for elliptic equations with random coefficients. Arch. Ration. Mech. Anal. 219(1), 255–348, 2016MathSciNetCrossRefGoogle Scholar
  7. 7.
    Armstrong, S.N., Shen, Z.: Lipschitz estimates in almost-periodic homogenization. Commun. Pure Appl. Math. 69(10), 1882–1923, 2016MathSciNetCrossRefGoogle Scholar
  8. 8.
    Armstrong, S .N., Smart, C.: Quantitative stochastic homogenization of convex integral functionals. Ann. Sci. Éc. Norm. Supér. (4)49(2), 423–481, 2016MathSciNetCrossRefGoogle Scholar
  9. 9.
    Avellaneda, M., Lin, F.: Compactness methods in the theory of homogenization. Commun. Pure Appl. Math. 40(6), 803–847, 1987MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. AMS Chelsea Publishing, Providence, RI (2011). Corrected reprint of the 1978 originalGoogle Scholar
  11. 11.
    Fischer, J., Otto, F.: A higher-order large-scale regularity theory for random elliptic operators. Commun. Partial Differ. Equ. 41(7), 1108–1148, 2016MathSciNetCrossRefGoogle Scholar
  12. 12.
    Flodén, L., Olsson, M.: Reiterated homogenization of some linear and nonlinear monotone parabolic operators. Can. Appl. Math. Q. 14(2), 149–183, 2006MathSciNetzbMATHGoogle Scholar
  13. 13.
    Geng, J., Shen, Z.: Uniform regularity estimates in parabolic homogenization. Indiana Univ. Math. J. 64(3), 697–733, 2015MathSciNetCrossRefGoogle Scholar
  14. 14.
    Geng, J., Shen, Z.: Convergence rates in parabolic homogenization with time-dependent periodic coefficients. J. Funct. Anal. 272(5), 2092–2113, 2017MathSciNetCrossRefGoogle Scholar
  15. 15.
    Geng, J., Shen, Z.: Asymptotic expansions of fundamental solutions in parabolic homogenization. Anal. PDE (to appear) Google Scholar
  16. 16.
    Gloria, A., Neukamm, S., Otto, F.: Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics. Invent. Math. 199(2), 455–515, 2015ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Gloria, A., Otto, F.: Quantitative results on the corrector equation in stochastic homogenization. JEMS19(11), 3489–3548, 2017MathSciNetCrossRefGoogle Scholar
  18. 18.
    Holmbom, A., Svanstedt, N., Wellander, N.: Multiscale convergence and reiterated homogenization of parabolic problems. Appl. Math. 50(2), 131–151, 2005MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kenig, C., Lin, F., Shen, Z.: Homogenization of elliptic systems with Neumann boundary conditions. J. Am. Math. Soc. 26(4), 901–937, 2013MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ladyženskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence, RI (1968)Google Scholar
  21. 21.
    Lieberman, G.: Second Order Parabolic Differential Equations. World Scientific Publishing Co., Inc, River Edge 1996CrossRefGoogle Scholar
  22. 22.
    Meshkova, Y.M., Suslina, T.A.: Homogenization of solutions of initial boundary value problems for parabolic systems. Funct. Anal. Appl. 49(1), 72–76 (2015). Translation of Funktsional. Anal. i Prilozhen. 49(1), 88–93 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Niu, W., Xu, Y.: Convergence rates in homogenization of higher-order parabolic systems. Discrete Contin. Dyn. Syst. 38(8), 4203–4229, 2018MathSciNetCrossRefGoogle Scholar
  24. 24.
    Niu, W., Xu, Y.: A refined convergence result in homogenization of second order parabolic systems. J. Differ. Equ. 266(12), 8294–8319, 2019ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Pastukhova, S.E., Tikhomirov, R.N.: Operator estimates in reiterated and locally periodic homogenization. Dokl. Akad. Nauk415(3), 304–309, 2007MathSciNetzbMATHGoogle Scholar
  26. 26.
    Pastukhova, S.E., Tikhomirov, R.N.: Estimates for locally periodic and reiterated homogenization: parabolic equations. Dokl. Akad. Nauk428(2), 166–170, 2009MathSciNetzbMATHGoogle Scholar
  27. 27.
    Shen, Z.: Periodic Homogenization of Elliptic Systems. Operator Theory: Advances and Applications. Advances in Partial Differential Equations (Basel), vol. 269. Birkhäuser, Cham 2018CrossRefGoogle Scholar
  28. 28.
    Suslina, T.A.: Homogenization of the Dirichlet problem for elliptic systems: \(L_2\)-operator error estimates. Mathematika59(2), 463–476, 2013MathSciNetCrossRefGoogle Scholar
  29. 29.
    Woukeng, J.-L.: \(\Sigma \)-convergence and reiterated homogenization of nonlinear parabolic operators. Commun. Pure Appl. Anal. 9(6), 1753–1789, 2010MathSciNetCrossRefGoogle Scholar
  30. 30.
    Xu, Q., Zhou, S.: Quantitative estimates in homogenization of parabolic systems of elasticity in Lipschitz cylinders. PreprintGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsLanzhou UniversityLanzhouPeople’s Republic of China
  2. 2.Department of MathematicsUniversity of KentuckyLexingtonUSA

Personalised recommendations