Advertisement

Debye Layer in Poisson–Boltzmann Model with Isolated Singularities

  • Chia-Yu HsiehEmail author
  • Yong Yu
Article
  • 79 Downloads

Abstract

We show the existence of solutions to the charge conserved Poisson–Boltzmann equation with a Dirichlet boundary condition on \({\partial }\Omega \). Here \(\Omega \) is a smooth simply connected bounded domain in \({\mathbb {R}}^n\) with \(n \geqslant 2\). When \(n = 2\), the solutions can have isolated singularities at prescribed points in \(\Omega \), in which case they are essentially weak solutions of the charge conserved Poisson–Boltzmann equations with Dirac measures as source terms. By contrast, for higher dimensional cases \(n \geqslant 3\), all the isolated singularities are removable. As a small parameter \(\epsilon \) tends to zero, and the solutions develop a Debye boundary layer near the boundary \({\partial }\Omega \). In the interior of \(\Omega \), the solutions converge to a unique constant. The limiting constant is explicitly calculated in terms of a novel formula which depends only on the supplied Dirichlet data on \({\partial }\Omega \). In addition we also give a quantitative description on the asymptotic behaviour of the solutions as \(\epsilon \rightarrow 0\).

Notes

References

  1. 1.
    Barcilon, V., Chen, D.-P., Eisenberg, R.S., Jerome, J.W.: Qualitative properties of steady-state Poisson–Nernst–Planck systems: perturbation and simulation study. SIAM J. Appl. Math. 57(3), 631–648, 1997MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bazant, M.Z., Thornton, K., Ajdari, A.: Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E70, 021506, 2004ADSCrossRefGoogle Scholar
  3. 3.
    Biler, P., Dolbeault, J.: Long time behavior of solutions of Nernst–Planck and Debye–Hückel drift-diffusion systems. Ann. Henri Poincaré1(3), 461–472, 2000ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Biler, P., Hebisch, W., Nadzieja, T.: The Debye system: existence and large time behavior of solutions. Nonlinear Anal. 23(9), 1189–1209, 1994MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Brezis, H., Marcus, M., Ponce, A.C.: A new concept of reduced measure for nonlinear elliptic equations. C. R. Math. Acad. Sci. Paris339(3), 169–174, 2004MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Brezis, H., Marcus, M., Ponce, A.C.: Nonlinear elliptic equations with measures revisited, mathematical aspects of nonlinear dispersive equations. Ann. Math. Stud. 163, 55–109, 2007zbMATHGoogle Scholar
  7. 7.
    Brezis, H., Merle, F.: Uniform estimates and blow-up behavior for solutions of \(-\Delta u = V(x) e^u\) in two dimensions. Commun. Partial Differ. Equ. 16(8–9), 1223–1253, 1991zbMATHCrossRefGoogle Scholar
  8. 8.
    Brezis, H., Oswald, L.: Singular solutions for some semilinear elliptic equations. Arch. Rational Mech. Anal. 99(3), 249–259, 1987ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Brezis, H., Veron, L.: Removable singularities for some nonlinear elliptic equations. Arch. Rational Mech. Anal. 75(1), 1–6, 1980ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Chapman, D.L.: LI. A contribution to the theory of electrocapillarity. Phil. Mag. 25, 475–481, 1913zbMATHCrossRefGoogle Scholar
  11. 11.
    Davis, M.E., McCammon, J.A.: Electrostatics in biomolecular structure and dynamics. Chem. Rev. 90, 509–521, 1990CrossRefGoogle Scholar
  12. 12.
    Debye, P., Hückel, E.: Zur theorie der elektrolyte. I. Gefrierpunktserniedrigung und verwandte erscheinungen. Physikal. Zeitschr. 24, 185–206, 1923zbMATHGoogle Scholar
  13. 13.
    Derjaguin, B., Landau, L.: Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys. Chim. URSS14, 633–662, 1941Google Scholar
  14. 14.
    Eisenberg, R.S.: Computing the field in proteins and channels. J. Membrane Biol. 150, 1–25, 1996CrossRefGoogle Scholar
  15. 15.
    Fontelos, M.A., Gamboa, L.B.: On the structure of double layers in Poisson–Boltzmann equation. Discret. Contin. Dyn. Syst. Ser. B17(6), 1939–1967, 2012MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Friedman, A., Tintarev, K.: Boundary asymptotics for solutions of the Poisson–Boltzmann equation. J. Differ. Equ. 69(1), 15–38, 1987ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin 2001 zbMATHGoogle Scholar
  18. 18.
    Gouy, G.: Sur la constitution de la charge électrique à la surface d’un électrolyte. J. Phys. Theor. Appl. 9(1), 457–468, 1910zbMATHCrossRefGoogle Scholar
  19. 19.
    Gummel, H.K.: A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electron Dev. 11, 455–465, 1964ADSCrossRefGoogle Scholar
  20. 20.
    Honig, B., Nicholls, A.: Classical electrostatics in biology and chemistry. Science268, 1144–1149, 1995ADSCrossRefGoogle Scholar
  21. 21.
    Kraus, D., Roth, O.: The behaviour of solutions of the Gaussian curvature equation near an isolated boundary point. Math. Proc. Cambridge Philos. Soc. 145(3), 643–667, 2008ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Krzywicki, A., Nadzieja, T.: Radially symmetric Poisson–Boltzmann equation in a domain expanding to infinity. Math. Methods Appl. Sci. 12(5), 405–412, 1990ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Lee, C.-C.: The charge conserving Poisson–Boltzmann equations: existence, uniqueness, and maximum principle. J. Math. Phys. 55(5), 051503, 2014. 16 pp.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Lee, C.-C.: Asymptotic analysis of charge conserving Poisson–Boltzmann equations with variable dielectric coefficients. Discret. Contin. Dyn. Syst. 36(6), 3251–3276, 2016MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Lee, C.-C., Lee, H., Hyon, Y., Lin, T.-C., Liu, C.: New Poisson–Boltzmann type equations: one-dimensional solutions. Nonlinearity24(2), 431–458, 2011ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Rubinstein, I.: Counterion condensation as an exact limiting property of solutions of the Poisson–Boltzmann equation. SIAM J. Appl. Math. 46(6), 1024–1038, 1986MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Song, Z., Cao, X., Huang, H.: Electroneutral models for dynamic Poisson–Nernst–Planck systems. Phys. Rev. E97, 012411, 2018ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Vazquez, J.L., Véron, L.: Singularities of elliptic equations with an exponential nonlinearity. Math. Ann. 269(1), 119–135, 1984MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Vazquez, J.L., Véron, L.: Isolated singularities of some semilinear elliptic equations. J. Differ. Equ. 60(3), 301–321, 1985ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Wang, S.: Quasineutral limit of the multi-dimensional drift-diffusion-Poisson models for semiconductors with \(p\)-\(n\)-junctions. Math. Models Methods Appl. Sci. 16(4), 537–557, 2006MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsThe Chinese University of Hong KongSha Tin, New TerritoriesHong Kong

Personalised recommendations