Advertisement

Linear Inviscid Damping in Gevrey Spaces

Article
  • 70 Downloads

Abstract

We prove linear inviscid damping near a general class of monotone shear flows in a finite channel, in Gevrey spaces. This is an essential step towards proving nonlinear inviscid damping for general shear flows that are not close to the Couette flow, which is a major open problem in 2d Euler equations.

Notes

Acknowledgements

We are grateful to the anonymous referee for invaluable suggestions that improved the presentation of the paper.

References

  1. 1.
    Bedrossian, J., Masmoudi, N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publ. Math. l’IHES 122, 195–300, 2015MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bedrossian, J., Coti Zelati, M., Vicol, V.: Vortex axisymmetrization, inviscid damping, and vorticity depletion in the linearized 2D Euler equations. arXiv:1711.03668
  3. 3.
    Bedrossian, J.: Nonlinear echoes and Landau damping with insufficient regularity 2016. arXiv:1605.06841
  4. 4.
    Bouchet, F., Morita, H.: Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations. Phys. D 239, 948–966, 2010MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Case, K.: Stability of inviscid plane Couette flow. Phys. Fluids 3, 143–148, 1960ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Deng, Y., Masmoudi, N.: Long time instability of the Couette flow in low Gevrey spaces, preprint 2018. arXiv:1803.01246
  7. 7.
    Faddeev, L.: On the theory of the stability of plane-parallel flows of an ideal fluid. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova Akademii Nauk SSSR, Vol. 21, pp 164–172, 1971Google Scholar
  8. 8.
    Grenier, E., Nguyen, T., Rousset, F., Soffer, A.: Linear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator method. arXiv:1804.08291
  9. 9.
    Ionescu, A., Jia, H.: Inviscid damping near shear flows in a channel, preprint. arXiv:1808.04026
  10. 10.
    Ionescu, A., Jia, H.: Axi-symmetrization near point vortex solutions for the 2D Euler equation, preprint. arXiv:1904.09170
  11. 11.
    Jia, H.: Linear inviscid damping near monotone shear flows, preprint. arXiv:1902.06849
  12. 12.
    Kelvin, L.: Stability of fluid motion-rectilinear motion of viscous fluid between two plates. Phi Mag. 24, 155, 1887Google Scholar
  13. 13.
    Lin, Z., Zeng, C.: Inviscid dynamical structures near Couette flow. Arch. Ration. Mech. Anal. 200, 1075–1097, 2011MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lin, Z.: Instability of some ideal plane flows. SIAM J. Math. Anal. 35(2), 318–356, 2003MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mouhot, C., Villani, C.: On Landau damping. Acta Math. 207, 29–201, 2011MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Orr, W.: The stability or instability of steady motions of a perfect liquid and of a viscous liquid. Part I: a perfect liquid. Proc. R. Ir. Acad., A Math. Phys. Sci. 27, 9–68, 1907Google Scholar
  17. 17.
    Rayleigh, L.: On the stability or instability of certain fluid motions. Proc. Lond. Math. Soc. S1–11, 57, 1880MathSciNetzbMATHGoogle Scholar
  18. 18.
    Rosencrans, S., Sattinger, D.: On the spectrum of an operator occurring in the theory of Hydrodynamics stability. J. Math. Phys. 45, 289–300, 1966MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Stepin, S.: Nonself-adjoint Friedrichs model in hydrodynamic stability. Funct. Anal. Appl. Vol. 29, No. 2, 1995. Translated from Funktsionaltnyi Analiz i Ego Prilozheniya, Vol. 29, No. 2, pp. 22–35, April–June, 1995. Original article submitted (August 3, 1994)Google Scholar
  20. 20.
    Yamanaka, T.: A new higher order chain rule and Gevrey class. Ann. Glob. Anal. Geom. 7, 179–203, 1989MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping for a class of monotone shear flow in Sobolev spaces. Commun. Pure Appl. Math. 71, 617–687, 2018MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and vorticity depletion for shear flows. arXiv:1704.00428
  23. 23.
    Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and enhanced dissipation for the Kolmogorov flow. arXiv:1711.01822
  24. 24.
    Zillinger, C.: Linear inviscid damping for monotone shear flows. Trans. Am. Math. Soc. 369, 8799–8855, 2017MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zillinger, C.: Linear inviscid damping for monotone shear flows in a finite periodic channel, boundary effects, blow-up and critical Sobolev regularity. Arch. Ration. Mech. Anal. 221, 1449–1509, 2016MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zelati, M.C., Zillinger, C.: On degenerate circular and shear flows: the point vortex and power law circular flows. arXiv:1801.07371

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of MinnesotaMinneapolisUSA

Personalised recommendations