On Identifying Magnetized Anomalies Using Geomagnetic Monitoring Within a Magnetohydrodynamic model

  • Youjun Deng
  • Jinhong Li
  • Hongyu LiuEmail author


This paper is a continuation and an extension of our recent work (Deng et al. in Arch Ration Mech Anal 231(1):153–187, 2019) on the identification of magnetized anomalies using geomagnetic monitoring, which aims to establish a rigorous mathematical theory for the geomagnetic detection technology. Suppose a collection of magnetized anomalies is present in the shell of the Earth. By monitoring the variation of the magnetic field of the Earth due to the presence of the anomalies, we establish sufficient conditions for the unique recovery of these unknown anomalies. Deng et al. (2019), the geomagnetic model was described by a linear Maxwell system. In this paper, we consider a much more sophisticated and complicated magnetohydrodynamic model, which stems from the widely accepted dynamo theory of geomagnetics.



The authors would like to express their gratitudes to the anonymous referee for many insightful and constructive comments, which have led to significant improvements on the results and presentation of the paper. The work of Y. Deng was supported by NSF Grant of China No. 11601528, NSF Grant of Hunan Nos. 2017JJ3432 and 2018JJ3622, Innovation-Driven Project of Central South University, No. 2018CX041. The work of H. Liu was supported by the FRG and startup grants from Hong Kong Baptist University, Hong Kong RGC General Research Funds 12302017, 12301218 and 12302919.


  1. 1.
    Ammari, H., Chen, J., Chen, Z., Garnier, J., Volkov, D.: Target detection and characterization from electromagnetic induction data. J. Math. Pures Appl. 101(9), 54–75, 2014MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ammari, H., Deng, Y., Millien, P.: Surface plasmon resonance of nanoparticles and applications in imaging. Arch. Ration. Mech. Anal. 220, 109–153, 2016MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ammari, H., Iakovleva, E., Lesselier, D., Perrusson, G.: MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions. SIAM J. Sci. Comput. 29(2), 674–709, 2007MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ammari, H., Kang, H.: Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences. Springer, Berlin 2007zbMATHGoogle Scholar
  5. 5.
    Ammari, H., Kang, H., Lee, H., Lim, M., Yu, S.: Enhancement of near cloaking for the full Maxwell equations. SIAM J. Appl. Math. 73(6), 2055–2076, 2013MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ammari, H., Nédélec, J.-C.: Low-frequency electromagnetic scattering. SIAM J. Math. Anal. 31(4), 836–861, 2000MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ammari, H., Vogelius, M.S., Volkov, D.: Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. II. The full Maxwell equations. J. Math. Pures Appl. (9) 80(8), 769–814, 2001MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Backus, G., Parker, R., Constable, C.: Foundations of Geomagnetism. Cambridge University Press, Cambridge 1996Google Scholar
  9. 9.
    Buffa, A., Costabel, M., Sheen, D.: On traces for \(H({{\rm curl}}, \Omega )\) in Lipschitz domains. J. Math. Anal. Appl. 276, 845–867, 2002MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chan, K.H., Zhang, K., Zou, J.: Spherical interface dynamos: mathematical theory, finite element approximation, and application. SIAM J. Numer. Anal. 44, 1877–1902, 2006MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chan, K., Zhang, K., Liao, X., Schubert, G., Zou, J.: A three-dimensional spherical nonlinear interface dynamo. Astrophys. J. 596, 663–679, 2003ADSCrossRefGoogle Scholar
  12. 12.
    Dassios, G.: Low-frequency scattering, chapter 1.5.1. Scattering: Scattering and Inverse Scattering in Pure and Applied Science, (Eds. Pike R. and Sabatier P.) Academic Press, New York, 230–244, 2002Google Scholar
  13. 13.
    Deng, Y., Li, H., Liu, H.: On spectral properties of Neuman–Poincaré operator on spheres and plasmonic resonances in 3D elastostatics. J. Spectr. Theory. 10.4171/JST/262.
  14. 14.
    Deng, Y., Li, J., Liu, H.: On identifying magnetized anomalies using geomagnetic monitoring. Arch. Ration. Mech. Anal. 231(1), 153–187, 2019MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Deng, Y., Liu, H., Liu, X.: Recovery of an embedded obstacle and the surrounding medium for Maxwell’s system. J. Differ. Equ. 267(4), 2192–2209, 2019ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Deng, Y., Liu, H., Uhlmann, G.: On an inverse boundary problem arising in brain imaging. J. Differ. Equ. 267(4), 2471–2502, 2019ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
  18. 18.
    He, Y., Zou, J.: A priori estimates and optimal finite element approximation of the MHD flow in smooth domains. ESAIM Math. Model. Numer. Anal. 52, 181–206, 2018MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hollerbach, R., Jones, C.A.: A geodynamo model incorporating a finitely conducting inner core. Phys. Earth Planet. Inter. 75, 317–327, 1993ADSCrossRefGoogle Scholar
  20. 20.
    Kleinman, R.E.: Low frequency electromagnetic scattering, chapter 1. Electromagnetic Scattering, (Ed. Uslenghi P.L.E. ) Academic Press, New York, 1–28, 1978Google Scholar
  21. 21.
    Labrosse, S.: Thermal and magnetic evolution of the Earth’s core. Phys. Earth Planet. Inter. 140, 127–143, 2003ADSCrossRefGoogle Scholar
  22. 22.
    Liu, H., Uhmann, G.: Determing both sound speed and internal source in thermo- and photo-acoutic tomography. Inverse Probl. 31, 105005, 2015ADSCrossRefGoogle Scholar
  23. 23.
    Nédélec, J.C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. Springer, New York 2001CrossRefzbMATHGoogle Scholar
  24. 24.
    Roberts, P.H., Glatzmaier, G.A.: The geodynamo, past, present and future. Geophys. Astrophys. Fluid Dyn. 94, 47–84, 2001ADSCrossRefGoogle Scholar
  25. 25.
    Sakuraba, A., Kono, M.: Effect of the inner core on the numerical solution of the magnetohydrodynamic dynamo. Phys. Earth Planet. Inter. 111, 105–121, 1999ADSCrossRefGoogle Scholar
  26. 26.
    Torres, R.H.: Maxwell’s equations and dielectric obstacles with Lipschitz boundaries. J. Lond. Math. Soc. 2(57), 157–169, 1998MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Weiss, N.: Dynamos in planets, stars and galaxies. Astron. Geophys. 43, 3.09–3.15, 2002Google Scholar
  28. 28.
    Zhan, X., Zhang, K., Zhu, R.: A full-sphere convection-driven dynamo: implications for the ancient geomagnetic field. Phys. Earth Planet. Inter. 187, 328–335, 2011ADSCrossRefGoogle Scholar
  29. 29.
    Zhang, K., Schubert, G.: Magnetohydrodynamics in rapidly rotating spherical systems. Ann. Rev. Fluid Mech. 32, 409–443, 2000ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsCentral South UniversityChangshaChina
  2. 2.School of ScienceQilu University of Technology (Shandong Academy of Sciences)JinanChina
  3. 3.Department of MathematicsHong Kong Baptist UniversityKowloonChina

Personalised recommendations