On the Averaged Green’s Function of an Elliptic Equation with Random Coefficients

  • Jongchon Kim
  • Marius LemmEmail author


We consider a divergence-form elliptic difference operator on the lattice \(\mathbb {Z}^d\), with a coefficient matrix that is an i.i.d. perturbation of the identity matrix. Recently, Bourgain introduced novel techniques from harmonic analysis to prove the convergence of the Feshbach-Schur perturbation series related to the averaged Green’s function of this model. Our main contribution is a refinement of Bourgain’s approach which improves the key decay rate from \(-2d+\epsilon \) to \(-3d+\epsilon \). (The optimal decay rate is conjectured to be \(-3d\).) As an application, we derive estimates on higher derivatives of the averaged Green’s function which go beyond the second derivatives considered by Delmotte–Deuschel and related works.



The authors would like to thank Wilhelm Schlag and Tom Spencer for helpful discussions. The authors are grateful to the Institute for Advanced Study for its hospitality during the 2017-2018 academic year. They also thank Alexis Drouot, Antoine Gloria, Felix Otto and Israel Michal Sigal for useful comments on a preprint version of this paper. This material is based upon work supported by the National Science Foundation under Grant No. DMS - 1638352.


  1. 1.
    Armstrong, S., Kuusi, T., Mourrat, J.-C.: The additive structure of elliptic homogenization. Invent. Math. 208, 999–1154, 2017ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Armstrong, S.N., Mourrat, J.-C.: Lipschitz regularity for elliptic equations with random coefficients. Arch. Ration. Mech. Anal. 219, 255–348, 2016MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aronson, D.G.: Bounds for the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc. 73, 890–896, 1967MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Aronson, D.G.: Non-negative solutions of linear parabolic equations. Ann. Scuola Norm. Sup. Pisa 22(3), 607–694, 1968MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bach, V., Fröhlich, J., Sigal, I.M.: Renormalization group analysis of spectral problems in quantum field theory. Adv. Math. 137(2), 205–298, 1998MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bella, P., Giunti, A., Otto, F.: Effective Multipoles in Random media, arXiv:1708.07672
  7. 7.
    Bella, P., Giunti, A., Otto, F.: Quantitative stochastic homogenization: local control of homogenization error through corrector, Mathematics and materials, 301–327, IAS/Park City Math. Ser., 23, Amer. Math. Soc., Providence, RI, 2017Google Scholar
  8. 8.
    Bourgain, J.: On a homogenization problem. J. Stat. Phys. 172, 314–320, 2018ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Carlen, E.A., Kusuoka, S., Stroock, D.W.: Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Statist. 23(2), 245–287, 1987MathSciNetzbMATHGoogle Scholar
  10. 10.
    Conlon, J.G.: Green’s functions for elliptic and parabolic equations with random coefficients. II. Trans. Amer. Math. Soc. 356(10), 4085–4142, 2004MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Conlon, J.G., Giunti, A., Otto, F.: Green’s function for elliptic systems: existence and Delmotte–Deuschel bounds, Calc. Var. Partial Differ. Equ. 56(6), Art. 163, 51, 2017Google Scholar
  12. 12.
    Conlon, J.G., Naddaf, A.: Greens functions for elliptic and parabolic equations with random coeffcients. New York J. Math. 6, 153–225, 2000MathSciNetzbMATHGoogle Scholar
  13. 13.
    Conlon, J.G., Naddaf, A.: On homogenization of elliptic equations with random coefficients. Electron. J. Probab. 5(9), 58, 2000MathSciNetzbMATHGoogle Scholar
  14. 14.
    Conlon, J.G., Spencer, T.: Strong convergence to the homogenized limit of elliptic equations with random coefficients. Trans. Amer. Math. Soc. 366(3), 1257–1288, 2014MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Delmotte, T., Deuschel, J.-D.: On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to \(\nabla \phi \) interface model. Probab. Theory Relat. Fields 133(3), 358–390, 2005MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    De Giogi, E.: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 3, 25–43, 1957Google Scholar
  17. 17.
    Duerinckx, M., Gloria, A., Otto, F.: The structure of fluctuations in stochastic homogenization, arXiv:1602.01717
  18. 18.
    Gloria, A., Marahrens, D.: Annealed estimates on the Green functions and uncertainty quantification. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5), 1153–1197, 2016ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gloria, A., Neukamm, S., Otto, F.: A regularity theory for random elliptic operators, arXiv:1409.2678
  20. 20.
    Gloria, A., Neukamm, S., Otto, F.: Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics. Invent. Math. 199(2), 455–515, 2015ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gloria, A., Otto, F.: An optimal variance estimate in stochastic homogenization of discrete elliptic equations. Ann. Probab. 39(3), 779–856, 2011MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gloria, A., Otto, F.: An optimal error estimate in stochastic homogenization of discrete elliptic equations. Ann. Appl. Probab. 22(1), 1–28, 2012MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Gloria, A., Otto, F.: Quantitative results on the corrector equation in stochastic homogenization. J. Eur. Math. Soc. 19(11), 3489–3548, 2017MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, New York 1994CrossRefGoogle Scholar
  25. 25.
    Kozlov, S.M.: The averaging of random operators. Mat. Sb. 109(151)(2), 188–202, 1979MathSciNetGoogle Scholar
  26. 26.
    Littman, W., Stampacchia, G., Weinberger, H.F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa 17, 43–77, 1963MathSciNetzbMATHGoogle Scholar
  27. 27.
    Marahrens, D., Otto, F.: Annealed estimates on the Green function. Probab. Theory Related Fields 163(3–4), 527–573, 2015MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Marahrens, D., Otto, F.: On annealed elliptic Green’s function estimates. Mathem. Bohemica 140(4), 489–506, 2015MathSciNetzbMATHGoogle Scholar
  29. 29.
    Moser, J.: A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13, 457–468, 1960MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Naddaf, A., Spencer, T.: On homogenization and scaling limit of some gradient perturbations of a massless free field. Commun. Math. Phys. 183(1), 55–84, 1997ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Nash, J.: Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80, 931–954, 1958MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Papanicolaou, G., Varadhan, S.: Boundary value problems with rapidly oscillating random coefficients. Colloq. Math. Soc. János Bolyai 27, 835–873, 1982MathSciNetGoogle Scholar
  33. 33.
    Sigal, I.M.: Homogenization problem, unpublished preprintGoogle Scholar
  34. 34.
    Stein, E.M.: Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press 1970Google Scholar
  35. 35.
    Stein, E.M., Wainger, S.: Discrete analogues in harmonic analysis. II. Fractional integration. J. Anal. Math. 80, 335–355, 2000MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Yurinski ĭ, V.V.: Averaging of symmetric diffusion in a random medium. (Russian) Sibirsk. Mat. Zh. 27(4), 167–180, 1986Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations