Advertisement

Effects of Soft Interaction and Non-isothermal Boundary Upon Long-Time Dynamics of Rarefied Gas

  • Renjun DuanEmail author
  • Feimin Huang
  • Yong Wang
  • Zhu Zhang
Article
  • 49 Downloads

Abstract

In the paper, assuming that the motion of rarefied gases in a bounded domain is governed by the angular cutoff Boltzmann equation with diffuse reflection boundary, we study the effects of both soft intermolecular interaction and non-isothermal wall temperature upon the long-time dynamics of solutions to the corresponding initial boundary value problem. Specifically, we are devoted to proving the existence and dynamical stability of stationary solutions whenever the boundary temperature has suitably small variations around a positive constant. For the proof of existence, we introduce a new mild formulation of solutions to the steady boundary-value problem along the speeded backward bicharacteristic, and develop the uniform estimates on approximate solutions in both \(L^2\) and \(L^\infty \). Such mild formulation proves to be useful for treating the steady problem with soft potentials even over unbounded domains. In showing the dynamical stability, a new point is that we can obtain the sub-exponential time-decay rate in \(L^\infty \) without losing any velocity weight, which is actually quite different from the classical results, such as those in Caflisch (Commun Math Phys 74:97–109, 1980) and Strain and Guo (Arch Ration Mech Anal 187:287–339, 2008), for the torus domain and essentially due to the diffuse reflection boundary and the boundedness of the domain.

Notes

Acknowledgements

Renjun Duan is partially supported by the General Research Fund (Project No. 14302817) and the Direct Grant (Project No. 4053213) from CUHK. Feimin Huang is partially supported by National Center for Mathematics and Interdisciplinary Sciences, AMSS, CAS and NSFC Grant No.11688101. Yong Wang is partly supported by NSFC Grant No. 11771429 and 11688101.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Aoki, K., Golse, F., Kosuge, S.: The steady Boltzmann and Navier–Stokes equations. Bull. Inst. Math. Acad. Sin. 10(2), 205–257, 2015MathSciNetzbMATHGoogle Scholar
  2. 2.
    Arkeryd, L., Cercignani, C.: A global existence theorem for the initial-boundary value problem for the Boltzmann equation when the boundaries are not isothermal. Arch. Ration. Mech. Anal. 125(3), 271–287, 1993MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arkeryd, L., Cercignani, C., Illner, R.: Measure solutions of the steady Boltzmann equation in a slab. Commun. Math. Phys. 142(2), 285–296, 1991ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arkeryd, L., Esposito, R., Marra, R., Nouri, A.: Stability of the laminar solution of the Boltzmann equation for the Benard problem. Bull. Inst. Math. Acad. Sin. 3(1), 51–97, 2008MathSciNetzbMATHGoogle Scholar
  5. 5.
    Arkeryd, L., Maslova, N.: On diffuse reflection at the boundary for the Boltzmann equation and related equations. J. Stat. Phys. 77(5–6), 1051–1077, 1994ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Arkeryd, L., Nouri, A.: Boltzmann asymptotics with diffuse reflection boundary condition. Monatshefte Math. 123, 285–298, 1997MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Arkeryd, L., Nouri, A.: \(L^1\) solutions to the stationary Boltzmann equation in a slab. Ann. Fac. Sci. Toulouse Math. (6) 9(3), 375–413, 2000MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Arkeryd, L., Nouri, A.: The stationary Boltzmann equation in \({\mathbb{R }}^n\) with given indata. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1(2), 359–385, 2002MathSciNetzbMATHGoogle Scholar
  9. 9.
    Briant, M., Guo, Y.: Asymptotic stability of the Boltzmann equation with Maxwell boundary conditions. J. Differ. Equ. 261(12), 7000–7079, 2016ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Caflisch, R.E.: The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous. Commun. Math. Phys. 74, 71–95, 1980ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Caflisch, R.E.: The Boltzmann equation with a soft potential. II. Nonlinear, spatially-periodic. Commun. Math. Phys. 74, 97–109, 1980ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cercignani, C.: On the initial-boundary value problem for the Boltzmann equation. Arch. Ration. Mech. Anal. 116, 307–315, 1992MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, New York 1994CrossRefzbMATHGoogle Scholar
  14. 14.
    Chen, C.-C., Chen, I.-K., Liu, T.-P., Sone, Y.: Thermal transpiration for the linearized Boltzmann equation. Commun. Pure Appl. Math. 60(2), 147–163, 2007MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Desvillettes, L.: Convergence to equilibrium in large time for Boltzmann and B.G.K. equations. Arch. Ration. Mech. Anal. 110(1), 73–91, 1990MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159, 243–316, 2005MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    DiPerna, R.J., Lions, P.-L.: On the Cauchy problem for Boltzmann equation: global existence and weak stability. Ann. Math. 130, 321–366, 1989MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Duan, R.J., Huang, F.M., Wang, Y., Yang, T.: Global well-posedness of the Boltzmann equation with large amplitude initial data. Arch. Ration. Mech. Anal. 225(1), 375–424, 2017MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Duan, R.J., Wang, Y.: The Boltzmann equation with large-amplitude initial data in bounded domains. Adv. Math. 343, 36–109, 2019MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Duan, R.J., Yang, T., Zhao, H.J.: The Vlasov–Poisson–Boltzmann system for soft potentials. Math. Models Methods Appl. Sci. 23(6), 979–1028, 2013MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Esposito, R., Guo, Y., Kim, C., Marra, R.: Non-isothermal boundary in the Boltzmann theory and Fourier law. Commun. Math. Phys. 323, 177–239, 2013ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Esposito, R., Guo, Y., Kim, C., Marra, R.: Stationary solutions to the Boltzmann equation in the hydrodynamic limit. Ann. PDE 4(1), Art. 1, 2018MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Esposito, R., Lebowitz, J.L., Marra, R.: Hydrodynamic limit of the stationary Boltzmann equation in a slab. Commun. Math. Phys. 160(1), 49–80, 1994ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Esposito, R., Lebowitz, J.L., Marra, R.: The Navier–Stokes limit of stationary solutions of the nonlinear Boltzmann equation. J. Stat. Phys. 78, 389–412, 1995ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Glassey, R.T.: The Cauchy Problem in Kinetic Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia 1996CrossRefzbMATHGoogle Scholar
  26. 26.
    Guiraud, J.P.: Probleme aux limites intérieur pour l’équation de Boltzmann linéaire. J. de Méc. 9(3), 183–231, 1970zbMATHGoogle Scholar
  27. 27.
    Guiraud, J.P.: Probleme aux limites intérieur pour l’équation de Boltzmann en régime stationnaire, faiblement non linéaire. J. de Méc. 11(2), 443–490, 1972zbMATHGoogle Scholar
  28. 28.
    Guo, Y.: Classical solutions to the Boltzmann equation for molecules with an angular cutoff. Arch. Ration. Mech. Anal. 169(4), 305–353, 2003MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Guo, Y.: Decay and continuity of the Boltzmann equation in Bounded domains. Arch. Ration. Mech. Anal. 197, 713–809, 2010MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Guo, Y., Kim, C., Tonon, D., Trescases, A.: Regularity of the Boltzmann equation in convex domains. Invent. Math. 207(1), 115–290, 2017ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Guo, Y., Liu, S.-Q.: The Boltzmann equation with weakly inhomogeneous data in bounded domain. J. Funct. Anal. 272(5), 2038–2057, 2017MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Hamdache, K.: Initial-boundary value problems for the Boltzmann equation: global existence of weak solutions. Arch. Ration. Mech. Anal. 119(4), 309–353, 1992MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Kim, C., Lee, D.: The Boltzmann equation with specular boundary condition in convex domains. Commun. Pure Appl. Math. 71(3), 411–504, 2018MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Kuo, H.-W., Liu, T.-P., Tsai, L.-C.: Equilibrating effects of boundary and collision in rarefied gases. Commun. Math. Phys. 328(2), 421–480, 2014ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Kuo, H.-W., Liu, T.-P., Tsai, L.-C.: Free molecular flow with boundary effect. Commun. Math. Phys. 318(2), 375–409, 2013ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Liu, S.-Q., Yang, X.-F.: The initial boundary value problem for the Boltzmann equation with soft potential. Arch. Ration. Mech. Anal. 233(1), 463–541, 2017MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Maslova, N.B.: Nonlinear Evolution Equations, Kinetic Approach. World Scientific, Singapore 1993CrossRefzbMATHGoogle Scholar
  38. 38.
    Mischler, S.: Kinetic equations with Maxwell boundary conditions. Ann. Sci. Ec. Norm. Super. 43(5), 719–760, 2010MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Sone, Y.: Molecular Gas Dynamics: Theory, Techniques, and Applications. Birkhauser, Boston 2007CrossRefzbMATHGoogle Scholar
  40. 40.
    Strain, R.M.: Asymptotic stability of the relativistic Boltzmann equation for the soft potentials. Commun. Math. Phys. 300(2), 529–597, 2010ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Strain, R.M.: Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinet. Relat. Models 5, 583–613, 2012MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Strain, R.M., Guo, Y.: Almost exponential decay near Maxwellian. Commun. Partial Differ. Equ. 31, 417–429, 2006MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Strain, R.M., Guo, Y.: Exponential decay for soft potentials near Maxwellian. Arch. Ration. Mech. Anal. 187, 287–339, 2008MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Ukai, S., Asano, K.: On the Cauchy problem of the Boltzmann equation with a soft potential. Publ. Res. Inst. Math. Sci. 18(2), 477–519, 1982MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Vidav, I.: Spectra of perturbed semigroups with applications to transport theory. J. Math. Anal. Appl. 30, 264–279, 1970MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Yu, S.-H.: Stochastic formulation for the initial-boundary value problems of the Boltzmann equation. Arch. Ration. Mech. Anal. 192(2), 217–274, 2009MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Renjun Duan
    • 1
    Email author
  • Feimin Huang
    • 2
    • 3
  • Yong Wang
    • 2
    • 3
  • Zhu Zhang
    • 1
  1. 1.Department of MathematicsThe Chinese University of Hong KongShatinHong Kong
  2. 2.Institute of Applied Mathematics, AMSSChinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations