Advertisement

Archive for Rational Mechanics and Analysis

, Volume 233, Issue 3, pp 1441–1468 | Cite as

Dynamics of the Ericksen–Leslie Equations with General Leslie Stress II: The Compressible Isotropic Case

  • Matthias HieberEmail author
  • Jan Prüss
Article
  • 29 Downloads

Abstract

In this article, the non-isothermal compressible Ericksen–Leslie system for nematic liquid crystals subject to general Leslie stress is considered. It is shown that this system is locally well-posed within the \(L_q\)-setting and that for initial data close to equilibria points (which are identical with the ones for the incompressible situation), the solution exists globally. Moreover, any global solution which does not develop singularities converges to an equilibrium in the topology of the natural state manifold. Note that no structural assumptions on the Leslie coefficients are imposed and, in particular, Parodi’s relation is not being assumed. The results can be viewed as an extension of the studies in Hieber and Prüss (Math Ann 369:977–996, 2017) for the incompressible case to the compressible situation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Chandrasekhar, S.: Liquid Crystals. Cambridge University Press, Cambridge 1992CrossRefGoogle Scholar
  2. 2.
    Dai, M., Feireisl, E., Rocca, E., Schimperna, G., Schonbek, M.: On asymptotic isotropy for a hydrodynamic model of liquid crystals. Asymptot. Anal. 97, 189–210, 2016MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    De Anna, F., Liu, C.: Non-isothermal general Ericksen–Leslie system: derivation, analysis and thermodynamic consistency. Arch. Ration. Mech. Anal. 231, 637–717, 2019MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    DeGennes, P.G.: The Physics of Liquid Crystals. Oxford University Press, Oxford 1974Google Scholar
  5. 5.
    DeGennes, P.G., Prost, J.: The Physics of Liquid Crystals. Oxford University Press, Oxford 1995Google Scholar
  6. 6.
    Denk, R., Hieber, M., Prüss, J.: \({\mathcal{R}}\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166, 2003Google Scholar
  7. 7.
    Ericksen, J.L.: Hydrostatic theory of liquid crystals. Arch. Ration. Mech. Anal. 9, 371–378, 1962MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fan, J., Li, F., Nakamura, G.: Local well-posedness for a compressible non-isothermal model for nematic liquid crystals. J. Math. Phys. 59, 031503, 2018MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Feireisl, E., Frémond, M., Rocca, E., Schimperna, G.: A new approach to non-isothermal models for nematic liquid crystals. Arch. Ration. Mech. Anal. 205, 651–672, 2012MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Frank, F.C.: On the theory of liquid crystals. Discuss. Faraday Soc. 25, 19–28, 1958CrossRefGoogle Scholar
  11. 11.
    Guo, B., Xi, X., Xie, B.: Global well-posedness and decay of smooth solutions to the non-isothermal model for compressible neamtic liquid crystals. J. Differ. Equ. 262, 1413–1460, 2017CrossRefzbMATHGoogle Scholar
  12. 12.
    Hieber, M., Nesensohn, M., Prüss, J., Schade, K.: Dynamics of nematic lquid crystals: the quasilinear approach. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 397–408, 2016MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hieber, M., Prüss, J.: Thermodynamic consistent modeling and analysis of nematic liquid crystal flows. In: Suzuki, Y., Shibata, Y. (eds.) Mathematical Fluid Dynamics: Present and Future, vol. 183. Proceedings of Mathematics and StatisticsSpringer, Berlin 2016Google Scholar
  14. 14.
    Hieber, M., Prüss, J.: Dynamics of the Ericksen-Leslie equations with general Leslie stress I: The incompressible isotropic Case. Math. Ann. 369, 977–996, 2017MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hieber, M., Prüss, J.: Modeling and analysis of the Ericksen–Leslie equations for nematic liquid crystal flows. In: Giga, Y., Novotny, A. (eds.) Handbook of Mathematical Analyis in Mechanics of Viscous Fluids, pp. 1075–1134. Springer, Berlin 2018CrossRefGoogle Scholar
  16. 16.
    Hong, M., Li, J., Xin, Z.: Blow-up criteria of strong solutions to the Ericksen–Leslie system in \({\mathbb{R}}^3\). Commun. Part. Differ. Equ. 39, 1284–1328, 2014CrossRefzbMATHGoogle Scholar
  17. 17.
    Huang, T., Wang, C., Wen, H.: Strong solutions for compressible nematic liquid crystal flow. J. Differ. Equ. 252, 2222–2265, 2012MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Huang, T., Wang, C., Wen, H.: Blow up criterion for compressible nematic liquid crystal flows in dimension three. Arch. Ration. Mech. Anal. 204, 285–311, 2012MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Jiang, F., Song, J., Wang, D.: On multidimensional compressible flows for nematic liquid crystals with large initial energy in a bounded domain. J. Funct. Anal. 265, 1711–1756, 2013CrossRefGoogle Scholar
  20. 20.
    Latushkin, Y., Prüss, J., Schnaubelt, R.: Center manifolds and dynamics near equilibria of quasilinear parabolic systems with fully nonlinear boundary conditions. Discret. Cont. Dyn. Syst. Ser. B 9, 595–633, 2008MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    LeCrone, J., Prüss, J., Wilke, M.: On quasilinear parabolic evolution equations in weighted \(L^p\)-spaces II. J. Evol. Equ. 14, 509–533, 2014MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283, 1968MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lin, F.: On nematic liquid crystals with variable degree of freedom. Commun. Pure Appl. Math. 44, 453–468, 1991CrossRefzbMATHGoogle Scholar
  24. 24.
    Lin, F., Liu, Ch: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48, 501–537, 1995MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lin, F., Wang, C.: Global existence of weak solutions of the nematic liquid crystal flow in dimension three. Commun. Pure Appl. Math. 69, 1532–1571, 2016MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ma, W., Gong, H., Li, J.: Global strong solutions to incompressible Ericksen–Leslie system in \({\mathbb{R}}^3\). Nonlinear Anal. 109, 230–235, 2014MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Müller, I.: Thermodynamics. Interaction of Mechanics and Mathematics, Pitman 1985zbMATHGoogle Scholar
  28. 28.
    Oseen, C.W.: The theory of liquid crystals. Trans. Faraday Soc. 29, 883–899, 1933CrossRefzbMATHGoogle Scholar
  29. 29.
    Parodi, O.: Stress tensor for a nematic liquid crystal. J. Phys. 31, 581–584, 1970CrossRefGoogle Scholar
  30. 30.
    Prüss, J.: Maximal regularity for evolution equations in \(L_p\)-spaces. In: Conf. Semin. Mat. Univ. Bari (2002), No. 285, pp. 1-39 (2003)Google Scholar
  31. 31.
    Prüss, J., Simonett, G.: Moving interfaces and quasilinear parabolic evolution equations. In: Monographs in Mathematics,105, Birkhäuser (2016)Google Scholar
  32. 32.
    Prüss, J., Simonett, G., Zacher, R.: On convergence of solutions to equilibria for quasilinear parabolic problems. J. Differ. Equ. 246, 3902–3931, 2009MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Stewart, I.W.: The Static and Dynamic Contiuum Theory of Liquid Crystals. Taylor and Francis, Milton Park 2004Google Scholar
  34. 34.
    Virga, E.G.: Variational Theories for Liquid Crystals. Chapman-Hall, London 1994CrossRefzbMATHGoogle Scholar
  35. 35.
    Wang, C.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch. Ration. Mech. Anal. 200, 1–19, 2011MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Wang, W., Zhang, P., Zhang, Z.: Well-posedness of the Ericksen-Leslie system. Arch. Ration. Mech. Anal. 210, 837–855, 2013MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Wu, H., Xu, X., Liu, Ch: On the general Ericksen–Leslie system: Parodi’s relation, well-posedness and stability. Arch. Ration. Mech. Anal. 208, 59–107, 2013MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fachbereich Mathematik, Technische Universität DarmstadtDarmstadtGermany
  2. 2.Institut für Mathematik, Martin-Luther-Universität Halle-WittenbergHalleGermany

Personalised recommendations