Advertisement

Archive for Rational Mechanics and Analysis

, Volume 233, Issue 3, pp 975–1025 | Cite as

On Navier–Stokes–Korteweg and Euler–Korteweg Systems: Application to Quantum Fluids Models

  • Didier BreschEmail author
  • Marguerite Gisclon
  • Ingrid Lacroix-Violet
Article
  • 56 Downloads

Abstract

In this paper, the main objective is to generalize to the Navier–Stokes–Korteweg (with density dependent viscosities satisfying the BD relation) and Euler–Korteweg systems a recent relative entropy (proposed by Bresch et al. in C R Math Acad Sci Paris 354(1):45–49, 2016) introduced for the compressible Navier–Stokes equations with a linear density dependent shear viscosity and a zero bulk viscosity. As a concrete application, this helps to justify mathematically the convergence between global weak solutions of the quantum Navier–Stokes system (recently obtained simultaneously by Lacroix-Violet and Vasseur in J Math Pures Appl 114(9):191–210, 2018) and dissipative solutions of the quantum Euler system when the viscosity coefficient tends to zero; this selects a dissipative solution as the limit of a viscous system. We also recover the weak–strong uniqueness for the Quantum-Euler as in Giesselmann et al. (Arch Ration Mech Anal 223:1427–1484, 2017) and extend the result for the Quantum-Navier–Stokes equations. Our results are based on the fact that Euler–Korteweg systems and corresponding Navier–Stokes–Korteweg systems can be reformulated through an augmented system such as the compressible Navier–Stokes system with density dependent viscosities satisfying the BD algebraic relation. This was also observed recently by Bresch et al. (2016) for the Euler–Korteweg system for numerical purposes. As a by-product of our analysis, we show that this augmented formulation helps to define relative entropy estimates for the Euler–Korteweg systems in a simplest way compared to recent works (see Donatelli et al. in Commun Partial Differ Equ 40:1314–1335, 2015; Giesselmann et al. 2017) with less hypothesis required on the capillary coefficient.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The third author acknowledges support from the teamINRIA/RAPSODI and the Labex CEMPI (ANR-11-LABX-0007-01). The first author acknowledges the project TELLUS INSU-INSMI “Approche croisée pour fluides visco-élasto-plastiques: vers une meilleure compréhension des zones solides/fluides”. The first and the second authors acknowledge the ANR Project FRAISE managed by C. Ruyer-Quil.

Conflict of interest

The authors have no conflicts of interest to declare.

References

  1. 1.
    Audiard, C., Haspot, B.: Global well-posedness of the Euler Korteweg system for small irrotational data. Commun. Math. Phys. 315, 201–247 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Antonelli, P., Marcati, P.: On the finite energy weak solutions to a system in quantum fluid dynamics. Commun. Math. Phys. l. 287, 657–686 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Antonelli, P., Marcati, P.: The quantum hydrodynamics system in two space dimensions. Arch. Rational Mech. Anal. 203, 499–527 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Antonelli, P., Spirito, S.: Global existence of finite energy weak solutions of the quantum Navier-Stokes equations. Arch. Ration. Mech. Anal. 255(3), 1161–1199 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bardos, C., Nguyen, T.-T.: Remarks on the inviscid limit for the compressible flows. Contemp. Math, AMS (2016)CrossRefzbMATHGoogle Scholar
  6. 6.
    Benzoni-Gavage, S., Danchin, R., Descombes, S.: On the well-posedness for the Euler-Korteweg model in several space dimensions. Indiana Univ. Math. J. 56, 1499–1579 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boyer, F., Fabrie, P.: Éléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles, Mathématiques & Applications, Springer, Berlin, Vol. 52 2006Google Scholar
  8. 8.
    Bresch, D., Couderc, F., Noble, P., Vila, J.-P.: A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler-Korteweg equations. C. R. Math. Acad. Sci. Paris 354(1), 39–43 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bresch, D., Desjardins, B.: Quelques modèles diffusifs capillaires de type Korteweg. C. R. - Mécanique 332(11), 881–886 (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Bresch, D., Desjardins, B.: Existence of global weak solutions for 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238, 211–223 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bresch, D., Desjardins, B., Lin, C.-K.: On some compressible fluid models: Korteweg, lubrication and shallow wate systems. Commun. Part. Diff. Eqs. 28, 1009–1037 (2003)CrossRefzbMATHGoogle Scholar
  12. 12.
    Bresch, D., Desjardins, B., Zatorska, E.: Two-velocity hydrodynamics in fluid mechanics : Part II Existence of global \(\kappa \)-entropy solutions to compressible Navier-Stokes systems with degenerate viscosities. J. Math Pures Appl. 104, 801–836 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bresch, D., Noble, P., Vila, J.-P.: Relative entropy for compressible Navier-Stokes equations with density dependent viscosities and applications. C. R. Math. Acad. Sci. Paris. 354(1), 45–49 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bresch, D., Noble, P, Vila, J.-P.: Relative entropy for compressible Navier–Stokes equations with density dependent viscosities and various applications, To appear in ESAIM Proc 2017Google Scholar
  15. 15.
    Bresch, D., Vasseur, A., Yu, C.: A remark on the existence of \(\kappa \)-entropy solutions to compressible Navier–Stokes systems. Work in progress 2019Google Scholar
  16. 16.
    Brull, S., Méhats, F.: Derivation of viscous correction terms for the isothermal quantum Euler model. ZAMM Z. Angew. Math. Mech. 90, 219–230 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Cahn, J.W., Hilliard, J.E.: Free energy of a non uniform system I, interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)CrossRefGoogle Scholar
  18. 18.
    Carles, R., Danchin, R., Saut, J.C.: Madelung, Gross-Pitaevskii and Korteweg. Nonlinearity 25, 2843–2873 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Carles, R., Carrapatoso, K., Hillairet, M.: Rigidity results in generalized isothermal fluids. Submitted 2018Google Scholar
  20. 20.
    Dunn, J.E., Serrin, J.: On the thermomechanics of interstitial working. Arch. Ration. Mech. Anal. 88, 95–133 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Donatelli, D., Feireisl, E., Marcati, P.: Well/ill posedness for the Euler-Korteweg-Poisson system and related problems. Commun. Partial Differ. Equ. 40, 1314–1335 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dong, J.: A note on barotropic compressible quantum Navier-Stokes equations. Nonlinear Anal. Real World Appl. 73, 854–856 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Feireisl, E., Jin, B.-J., Novotny, A.: Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech. 14(4), 717–730 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Feireisl, E., Novotny, A.: Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics, Birkhäuser Basel (2009)CrossRefzbMATHGoogle Scholar
  25. 25.
    Ferry, D., Zhou, J.-R.: Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling. Phys. Rev. B. 48, 7944–7950 (1993)CrossRefGoogle Scholar
  26. 26.
    Germain, P.: weak-strong uniqueness for the isentropic compressible Navier-Stokes system. J. Math. Fluid mech. 13(1), 137–146 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Giesselmann, J., Lattanzio, C., Tzavaras, A.-E.: relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics. Arch. Ration. Mech. Anal. 223, 1427–1484 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Giesselmann, J., Tzavaras, A.E.: Stability properties of the Euler–Korteweg system with nonmonotone pressures. Appl. Anal., (available online) 1–19 2017Google Scholar
  29. 29.
    Gisclon, M., Lacroix-Violet, I.: About the barotropic compressible quantum Navier-Stokes equations. Nonlinear Anal. Theory Methods Apppl. 128, 106–121 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Grant, J.: Pressure and stress tensor expressions in the fluid mechanical formulation of the Bose condensate equations. J. Phys. A: Math., Nucl. Gen., 6, 151–153 1973Google Scholar
  31. 31.
    Haspot, B.: weak–strong uniqueness for compressible Navier–Stokes system with degenerate viscosity coefficient and vacuum in one dimension, to appear in Communications in Mathematical Sciences 2017Google Scholar
  32. 32.
    Heida, M., Malek, J.: On compressible Korteweg fluid-like materials. Int. J. Eng. Sci. 48, 1313–1324 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Jiang, F.: A remark on weak solutions to the barotropic compressible quantum Navier-Stokes equations. Nonlinear Anal. Real World Appl. 12, 1733–1735 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Jüngel, A.: Global weak solutions to compressible Navier–Stokes equations for quantum fluids. SIAM, J. Math. Anal. 42, 1025–1045 2010Google Scholar
  35. 35.
    Korteweg, D.J.: Sur la forme que prennent les équations du mouvement si l'on tient compte de forces capillaires causées par les variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité. Arch. Neerl. Sci. Exactes. 6, 1–20 (1901)zbMATHGoogle Scholar
  36. 36.
    Lacroix-Violet, I., Vasseur, A.: Global weak solutions to the compressible quantum Navier-Stokes equations and its semi-classical limit. J. Math Pures Appl. 114(9), 191–210 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Li, J., Xin, Z.-P.: Global Existence of Weak Solutions to the Barotropic Compressible Navier–Stokes Flows with Degenerate Viscosities. arXiv:1504.06826
  38. 38.
    Lions, P.-L.: Mathematical topics in fluid mechanics. Vol 1 incompressible models, Oxford Science publication 2006Google Scholar
  39. 39.
    Loffredo, M., Morato, L.: On the creation of quantum vortex lines in rotating He II. Il nouvo cimento 108B, 205–215 (1993)CrossRefGoogle Scholar
  40. 40.
    Nigmatulin, R.I.: Methods of mechanics of a continuous medium for the description of multiphase mixtures. J. App. Math. Mech. 34, 1197–1112 (1970)zbMATHGoogle Scholar
  41. 41.
    Rowlinson, J.S.: Widom, B: Molecula theory of capillarity. Dover publications, Mineola (2002)Google Scholar
  42. 42.
    Sueur, F.: On the inviscid limit for the compressible Navier-Stokes system in an impermeable bounded domain. J. Math. Fluid Mech. 16, 163–178 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Van der Waals, J.D.: Thermodynamische theorie der capillariteit in de onderstelling van continue dichteisverandering. J. Stat. Phys. 20, 197–244 (1979)CrossRefGoogle Scholar
  44. 44.
    Vasseur, A., Yu, C.: Global weak solutions to compressible quantum Navier-Stokes equations with damping. SIAM J. Math. Anal. 48(2), 1489–1511 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Vasseur, A., Yu, C.: Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations. Inventiones mathematicae. 1–40 2016Google Scholar
  46. 46.
    Wyatt, R.: Quantum Dynamics with Trajectories. Springer, New York (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Didier Bresch
    • 1
    Email author
  • Marguerite Gisclon
    • 1
  • Ingrid Lacroix-Violet
    • 2
  1. 1.Laboratoire de Mathématiques, CNRS UMR 5127Université Savoie Mont-BlancLe Bourget-du-LacFrance
  2. 2.Laboratoire de Mathématiques, CNRS UMR 8524Université de Lille 1Villeneuve d’AscqFrance

Personalised recommendations