Archive for Rational Mechanics and Analysis

, Volume 233, Issue 1, pp 451–496 | Cite as

Existence of Weak Solutions for a General Porous Medium Equation with Nonlocal Pressure

  • Diana Stan
  • Félix del Teso
  • Juan Luis VázquezEmail author


We study the general nonlinear diffusion equation \({u_t=\nabla\cdot (u^{m-1}\nabla (-\Delta)^{-s}u)}\) that describes a flow through a porous medium which is driven by a nonlocal pressure. We consider constant parameters \({m > 1}\) and \({0 < s < 1}\), we assume that the solutions are non-negative and that the problem is posed in the whole space. In this paper we prove the existence of weak solutions for all integrable initial data \({u_0 \ge 0}\) and for all exponents \({m > 1}\) by developing a new approximation method that allows one to treat the range \({m\geqq 3}\), which could not be covered by previous works. We also extend the class of initial data to include any non-negative measure \({\mu}\) with finite mass. In passing from bounded initial data to measure data we make strong use of an L1-\({L^\infty}\) smoothing effect and other functional estimates. Finite speed of propagation is established for all \({m \geqq 2}\), and this property implies the existence of free boundaries. The authors had already proved that finite propagation does not hold for \({m < 2}\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are partially supported by the Spanish ProjectMTM2014-52240-P.Diana Stan and Félix del Teso are partially supported by theMEC-Juan de la Cierva postdoctoral fellowships number FJCI-2015-25797 and FJCI-2016-30148 respectively, and by the BCAM Severo Ochoa accreditation SEV-2017-0718. Félix del Teso is partially supported by the Toppforsk (research excellence) project Waves and Nonlinear Phenomena (WaNP), Grant 250070 from the Research Council of Norway. Juan Luis Vázquez has been a Visiting Professor at Univ. Complutense de Madrid during the academic year 2017–2018. The authors want to thank the anonymous referee for accurate suggestions that allowed them to improve the original text.


  1. 1.
    L. Ambrosio, N. Gigli, G. Savarè, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edn. (Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008)zbMATHGoogle Scholar
  2. 2.
    F. Andreu-Vaillo, J.M. Mazon, J.D. Rossi, J.J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, vol. 65 (American Mathematical Society, Providence, RI, 2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), Vol. 348. Springer, Cham. xx+552 pp 2014Google Scholar
  4. 4.
    P. Biler, C. Imbert, G. Karch, The nonlocal porous medium equation: Barenblatt profiles and other weak solutions. Arch. Ration. Mech. Anal. 215, 497–529 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    P. Biler, G. Karch, R. Monneau, Nonlinear diffusion of dislocation density and self-similar solutions. Commun. Math. Phys. 294, 145–168 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    M. Bonforte, A. Figalli, J.L. Vázquez, Sharp global estimates for local and nonlocal porous medium-type equations in bounded domains. Anal. PDEs 11(4), 945–982 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    M. Bonforte, Y. Sire, J.L. Vázquez, Optimal existence and uniqueness theory for the fractional heat equation. Nonlinear Anal. 153, 142–168 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    M. Bonforte, J. Vázquez, Quantitative local and global a priori estimates for fractional nonlinear diffusion equations. Adv. Math. 250, 242–284 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    L. Caffarelli, F. Soria, J.L. Vázquez, Regularity of solutions of the fractional porous medium flow. J. Eur. Math. Soc. (JEMS) 15, 1701–1746 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Caffarelli, L., Vázquez, J.: Regularity of solutions of the fractional porous medium flow with exponent 1/2, Algebrai Analiz [St. Petersb. Math. J.], 27(3), 125–156 2015; translation in St. Petersburg Math. J. 27(3) (2016), 437–460Google Scholar
  12. 12.
    L. Caffarelli, J.L. Vazquez, Nonlinear porous medium flow with fractional potential pressure. Arch. Ration. Mech. Anal. 202, 537–565 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    L.A. Caffarelli, J.L. Vázquez, Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete Contin. Dyn. Syst. 29, 1393–1404 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    J.A. Carrillo, Y. Huang, M.C. Santos, J.L. Vázquez, Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure. J. Differ. Equ. 258, 736–763 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. de Pablo, F. Quirós, A. Rodríguez, J. Vázquez, A fractional porous medium equation. Adv. Math. 226, 1378–1409 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A. de Pablo, F. Quirós, A. Rodríguez, J. Vázquez, A general fractional porous medium equation. Commun. Pure Appl. Math. 65, 1242–1284 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    de Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.: Classical solutions for a logarithmic fractional diffusion equation. J. Math. Pures Appl. (9) 101(6), 901–924 2014Google Scholar
  18. 18.
    F. del Teso, Finite difference method for a fractional porous medium equation. Calcolo 51, 615–638 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    F. del Teso, J. Endal, E.R. Jakobsen, Uniqueness and properties of distributional solutions of nonlocal equations of porous medium type. Adv. Math. 305, 78–143 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    del Teso, F., Endal, J., Jakobsen, E.R.: On the well-posedness of solutions with finite energy for nonlocal equations of porous medium type. EMS Series of Congress Reports: Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis, pp. 129-167 2018Google Scholar
  21. 21.
    del Teso, F., Jakobsen, E.R.: A convergent numerical method for the porous medium equation with fractional pressure, In preparationGoogle Scholar
  22. 22.
    del Teso, F., Vázquez, J.L.: Finite difference method for a general fractional porous medium equation 2013, arXiv:1307.2474
  23. 23.
    E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    J. Dolbeault, A. Zhang, Flows and functional inequalities for fractional operators Appl. Anal. 96, 1547–1560 (2018)zbMATHGoogle Scholar
  25. 25.
    M. Duerinckx, Mean-field limits for some Riesz interaction gradient flows. SIAM J. Math. Anal. 48(3), 2269–2300 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    G. Giacomin, J.L. Lebowitz, Phase segregation dynamics in particle systems with long range interaction I. Macroscopic limits. J. Stat. Phys. 87(1–2), 37–61 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Giacomin, G., Lebowitz, J.L.: Phase segregation dynamics in particle systems with long range interactions. II. Interface motion. SIAM J. Appl. Math. 58(6), 1707–1729 1998Google Scholar
  28. 28.
    Grafakos, L.: Classical Fourier Analysis, 2nd edn. Graduate Texts in Mathematics, 249. Springer, New York 2008Google Scholar
  29. 29.
    Ignat, L.I., Rossi, J.D.: Decay estimates for nonlocal problems via energy methods. J. Math. Pures Appl. (9) 92(2), 163–187 2009Google Scholar
  30. 30.
    C. Imbert, Finite speed of propagation for a non-local porous medium equation. Colloq. Math. 143(2), 149–157 (2016)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Ladyženskaja, O.A., Solonnikov, V.A., Ural'ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I., xi+648 pp 1968Google Scholar
  32. 32.
    V.A. Liskevich, Semenov, YuA: Some inequalities for sub-Markovian generators and their applications to the perturbation theory. Proc. Am. Math. Soc. 119(4), 1171–1177 (1993)Google Scholar
  33. 33.
    S. Lisini, E. Mainini, A. Segatti, A gradient flow approach to the porous medium equation with fractional pressure. Arch. Ration. Mech. Anal. 227(2), 567–606 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Nguyen, Q.-H., Vázquez, J.: Porous medium equation with nonlocal pressure in a bounded domain. Commun. PDEs.
  35. 35.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, Vol. 44. Springer, New York, 1983. viii+279 pp. ISBN: 0-387-90845-5Google Scholar
  36. 36.
    J.M. Rakotoson, R. Temam, An optimal compactness theorem and application to elliptic-parabolic systems. Appl. Math. Lett. 14(3), 303–306 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Rossi, J.D.: Approximations of local evolution problems by nonlocal ones. Bol. Soc. Esp. Mat. Apl. S \({{\rm e}}\) MA 42, 49–65 2008Google Scholar
  38. 38.
    S. Serfaty, Mean-Field Limits of the Gross-Pitaevskii and Parabolic Ginzburg-Landau Equations. J. Am. Math. Soc. 30(3), 713–768 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    S. Serfaty, J.L. Vázquez, A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators. Calc. Var. Partial Differ. Equ. 49(3–4), 1091–1120 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    J. Simon, Compact sets in the space \({L}^p(0,{T};{B})\). Ann. Mat. Pura Appl. 146, 65–96 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    D. Stan, F. del Teso, J.L. Vázquez, Finite and infinite speed of propagation for porous medium equations with fractional pressure. C. R. Math. Acad. Sci. Paris 352, 123–128 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Stan, D., Teso, F del., Vázquez, J.L.: Transformations of self-similar solutions for porous medium equations of fractional type. Nonlinear Anal. 119, 62–73 2015Google Scholar
  43. 43.
    D. Stan, F. del Teso, J.L. Vázquez, Finite and infinite speed of propagation for porous medium equations with nonlocal pressure. J. Differ. Equ. 260(2), 1154–1199 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    D. Stan, F. del Teso, J.L. Vázquez, Porous medium equation with nonlocal pressure. Curr. Res. Nonlinear Anal. 135, 277–308 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    E. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970)zbMATHGoogle Scholar
  46. 46.
    Stroock, D.W.: An Introduction to the Theory of Large Deviations, p. vii+196. Universitext. Springer, New York 1984Google Scholar
  47. 47.
    J.L. Vázquez, The Porous Medium Equation (Oxford University Press, Oxford, Mathematical Theory. Oxford Mathematical Monographs, 2007)zbMATHGoogle Scholar
  48. 48.
    J.L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete Contin. Dyn. Syst. Ser. S 7(4), 857–885 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    J.L. Vázquez, Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. J. Eur. Math. Soc. (JEMS) 16, 769–803 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Vázquez, J.L.: The mathematical theories of diffusion: nonlinear and fractional diffusion, In: ``Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, volume 2186 of Lecture Notes in Math., pp. 205–278. Springer, Cham 2017Google Scholar
  51. 51.
    Xiao, W., Zhou, X.: Well-Posedness of a porous medium flow with fractional pressure in Sobolev spaces. Electron. J. Differ. Equ. 2017(238), 1–7 2017 Google Scholar
  52. 52.
    X. Zhou, W. Xiao, J. Chen, Fractional porous medium and mean field equations in Besov spaces. Electron. J. Differ. Equ. 199, 1–14 (2014)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Matemáticas, Estadística y ComputaciónUniversidad de CantabriaSantanderSpain
  2. 2.Basque Center for Applied MathematicsBilbaoSpain
  3. 3.Departamento de MatemáticasUniversidad Autónoma de MadridMadridSpain

Personalised recommendations