Advertisement

Archive for Rational Mechanics and Analysis

, Volume 231, Issue 3, pp 1801–1809 | Cite as

Classical Incompressible Fluid Dynamics as a Limit of Relativistic Compressible Fluid Dynamics

  • Heinrich FreistühlerEmail author
Article
  • 92 Downloads

Abstract

Properly scaled, the relativistic Euler system for an arbitrary isentropic, causally compressible fluid is shown to formally converge, as c → ∞, to the non-relativistic Euler system for the homogeneously incompressible fluid. The limit is particularly interesting in the case of the relativistic stiff fluid, for which all modes are linearly degenerate in the sense of the theory of hyperbolic systems of conservation laws. This case connects the continuation problem for regular solutions to the incompressible version of the classical Euler equations with the old conjecture that for hyperbolic systems linear degeneracy of all modes prevent gradient blowup. One could say that questions in two different areas of the theory of partial differential equations are linked to each other through Einstein’s theory of relativity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boillat, G.: Chocs caractéristiques, C. R. Acad. Sci. Paris Sér. A-B 274, A1018–A1021 (1972)Google Scholar
  2. 2.
    Bressan, A.: Contractive metrics for nonlinear hyperbolic systems. Indiana Univ. Math. J. 37, 409–421 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Choquet-Bruhat, Y.: Ondes asymptotiques et approchées pour des systèmes d'équations aux dérivées partielles non linéaires. J. Math. Pures Appl. 48, 117-1-58 1969Google Scholar
  4. 4.
    Freistühler, H.: Linear degeneracy and shock waves. Math. Z. 207, 583–596 1991Google Scholar
  5. 5.
    Freistühler, H.: Relativistic barotropic fluids: A Godunov-Boillat formulation for their dynamics and a discussion of two special classes. Arch. Ration. Mech. Anal. (to appear)Google Scholar
  6. 6.
    John, F.: Formation of singularities in one-dimensional nonlinear wave propagation. Comm. Pure Appl. Math. 27, 377–405 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Klainerman, S., Majda, A.: Compressible and incompressible fluids. Comm. Pure Appl. Math. 35, 629–651 (1982)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lax, P.D.: Hyperbolic systems of conservation laws. II. Comm. Pure Appl. Math. 10, 537–566 (1957)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lichnerowicz, A.: Théories relativistes de la gravitation et de l'électromagnétisme. Relativité générale et théories unitaires. Masson et Cie, Paris (1955)zbMATHGoogle Scholar
  10. 10.
    Liu, T.-P.: Development of singularities in the nonlinear waves for quasilinear hyperbolic partial differential equations. J. Differ. Equ. 33, 92–111 (1979)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables. Applied Mathematical Sciences, 53. Springer-Verlag, New York, 1984Google Scholar
  12. 12.
    Rezzolla, L., Zanotti, O.: Relativistic Hydrodynamics. Oxford University Press, Oxford (2013)CrossRefzbMATHGoogle Scholar
  13. 13.
    Wiedemann, E.: Existence of weak solutions for the incompressible Euler equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 727–730 2011Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of KonstanzKonstanzGermany

Personalised recommendations