Advertisement

Archive for Rational Mechanics and Analysis

, Volume 231, Issue 3, pp 1745–1780 | Cite as

The Transmission Problem on a Three-Dimensional Wedge

  • Karl-Mikael PerfektEmail author
Open Access
Article

Abstract

We consider the transmission problem for the Laplace equation on an infinite three-dimensional wedge, determining the complex parameters for which the problem is well-posed, and characterizing the infinite multiplicity nature of the spectrum. This is carried out in two formulations leading to rather different spectral pictures. One formulation is in terms of square integrable boundary data, the other is in terms of finite energy solutions. We use the layer potential method, which requires the harmonic analysis of a non-commutative non-unimodular group associated with the wedge.

Notes

Acknowledgements

The author thanks Johan Helsing, Anders Karlsson, and Tobias Kuna for helpful discussions. The author is also grateful to the American Institute of Mathematics, San Jose, USA and the Erwin Schrödinger Institute, Vienna, Austria, in each of which some of this work was prepared.

References

  1. 1.
    Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. Dover, New York (1972)zbMATHGoogle Scholar
  2. 2.
    Alù A., Silveirinha M.G., Salandrino A., Engheta N.: Epsilon-near zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B 75, 155410 (2007)ADSGoogle Scholar
  3. 3.
    Ammari H., Millien P., Ruiz M., Zhang H.: Mathematical analysis of plasmonic nanoparticles: the scalar case. Arch. Ration. Mech. Anal. 224(2), 597–658 (2017)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ammari H., Ruiz M., Yu S., Zhang H.: Mathematical analysis of plasmonic resonances for nanoparticles: the full Maxwell equations. J. Differ. Equ. 261(6), 3615–3669 (2016)ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    Bahouri H., Chemin J.-Y., Danchin R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Vol. 343. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  6. 6.
    Bonnetier, E., Zhang, H.: Characterization of the essential spectrum of the Neumann–Poincaré operator in 2D domains with corner via Weyl sequences. Rev. Mat. Iberoam (to appear). arXiv:1702.08127
  7. 7.
    Chandler-Wilde S.N., Hewett D.P., Moiola A.: Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counter examples. Mathematika 61(2), 414–443 (2015)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Costabel M.: Some historical remarks on the positivity of boundary integral operators, Boundary element analysis Lecture Notes in Applied and Computational Mechanics, Vol. 29. Springer, Berlin (2007) 1–27, 2007Google Scholar
  9. 9.
    Costabel M., Stephan E.: A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106(2), 367–413 (1985)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Dahlberg B.E.J., Kenig C.E.: Hardy spaces and the Neumann problem in L p for Laplace’s equation in Lipschitz domains. Ann. Math. (2) 125(3), 437–465 (1987)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Di Nezza E., Palatucci G., Valdinoci E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Ding Z.: A proof of the trace theorem of Sobolev spaces on Lipschitz domains. Proc. Am. Math. Soc. 124(2), 591–600 (1996)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Dobrzynski L., Maradudin A.A.: Electrostatic edge modes in a dielectric wedge. Phys. Rev. B 6, 3810–3815 (1972)ADSGoogle Scholar
  14. 14.
    Duflo M., Moore C.C.: On the regular representation of a nonunimodular locally compact group. J. Funct. Anal. 21(2), 209–243 (1976)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Einav A., Loss M.: Sharp trace inequalities for fractional Laplacians. Proc. Am. Math. Soc. 140(12), 4209–4216 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Elschner J.: Asymptotics of solutions to pseudodifferential equations of Mellin type. Math. Nachr. 130(1), 267–305 (1987)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Escauriaza L., Fabes E.B., Verchota G.: On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundaries. Proc. Am. Math. Soc. 115(4), 1069–1076 (1992)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Escauriaza L., Mitrea M.: Transmission problems and spectral theory for singular integral operators on Lipschitz domains. J. Funct. Anal. 216(1), 141–171 (2004)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Eymard, P., Terp, M.: La transformation de Fourier et son inverse sur le groupe des ax + b d’un corps local, Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg 1976–1978), II, Lecture Notes in Mathematics , Vol. 739, 207–248Google Scholar
  20. 20.
    Fabes E.B., Jodeit M. Jr., Rivière N.M.: Potential techniques for boundary value problems on C 1-domains. Acta Math. 141(3-4), 165–186 (1978)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Fabes E.B., Jodeit M. Jr., Lewis J.E.: Double layer potentials for domains with corners and edges. Indiana Univ. Math. J. 26(1), 95–114 (1977)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Fabes E., Mendez O., Mitrea M.: Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159(2), 323–368 (1998)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Führ H.: Hausdorff–Young inequalities for group extensions. Can. Math. Bull. 49(4), 549–559 (2006)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Gelfand I., Neumark M.: Unitary representations of the group of linear transformations of the straight line. C. R. (Doklady) Acad. Sci URSS (N.S.) 55, 567–570 (1947)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Grachev, N.V., Maz’ya, V.G.: The Fredholm radius of integral operators of potential theory, Nonlinear equations and variational inequalities. Linear operators and spectral theory (Russian), Probl. Mat. Anal., Vol. 11, 109–133, 251, 1990 (translated in J. Soviet Math. 64(6), 1297–1313, 1993)Google Scholar
  26. 26.
    Hassi S., Sebestyén Z., de Snoo H.S.V.: On the nonnegativity of operator products. Acta Math. Hungar. 109(1–2), 1–14 (2005)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Helsing J., Perfekt K.-M.: On the polarizability and capacitance of the cube. Appl. Comput. Harmon. Anal. 34(3), 445–468 (2013)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Helsing, J., Perfekt, K.-M.: The spectra of harmonic layer potential operators on domains with rotationally symmetric conical points. J. Math. Pures Appl. 118(9), 235–287 (2018)Google Scholar
  29. 29.
    Hofmann S., Mitrea M., Taylor M.: Singular integrals and elliptic boundary problems on regular Semmes–Kenig–Toro domains. Int. Math. Res. Not. IMRN 14, 2567–2865 (2010)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Kang H., Lim M., Yu S.: Spectral resolution of the Neumann–Poincaré operator on intersecting disks and analysis of plasmon resonance. Arch. Ration. Mech. Anal. 226(1), 83–115 (2017)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Kenig, C.E.: Recent progress on boundary value problems on Lipschitz domains, Pseu dodifferential operators and applications (Notre Dame, Ind., 1984). Proceedings of the Symposium in Pure Mathematics , Vol. 43. American Mathematical Society, Providence,175–205, 1985Google Scholar
  32. 32.
    Khalil I.: Sur l’analyse harmonique du groupe affine de la droite. Stud. Math. 51, 139–167 (1974)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Khavinson D., Putinar M., Shapiro H.S.: Poincaré’s variational problem in potential theory. Arch. Ration. Mech. Anal. 185(1), 143–184 (2007)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Klein A., Russo B.: Sharp inequalities for Weyl operators and Heisenberg groups. Math. Ann. 235(2), 175–194 (1978)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Kleppner A., Lipsman R.L.: The Plancherel formula for group extensions. I. Ann. Sci. École Norm. Sup. (4) 5, 459–516 (1972)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Kleppner A., Lipsman R.L.: The Plancherel formula for group extensions. II. Ann. Sci. École Norm. Sup. (4) 6, 103–132 (1973)zbMATHGoogle Scholar
  37. 37.
    Kozlov V.A., Maz’ya V.G., Rossmann J.: Elliptic Boundary Value Problems in Domains with Point Singularities, Mathematical Surveys and Monographs, Vol. 52. American Mathematical Society, Providence (1997)Google Scholar
  38. 38.
    Krein M.G.: Compact linear operators on functional spaces with two norms. Integr. Equ. Oper. Theory 30(2), 140–162 (1998) Translated from the Ukranian, dedicated to the memory of Mark Grigorievich Krein (1907–1989)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Lewis J.E.: Layer potentials for elastostatics and hydrostatics in curvilinear polygonal domains. Trans. Am. Math. Soc. 320(1), 53–76 (1990)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Lewis J.E.: A symbolic calculus for layer potentials on C 1 curves and C 1 curvilinear polygons. Proc. Am. Math. Soc. 112(2), 419–427 (1991)zbMATHGoogle Scholar
  41. 41.
    Lewis J.E., Parenti C.: Pseudo differential operators of Mellin type. Commun. Partial Differ. Equ. 8(5), 477–544 (1983)zbMATHGoogle Scholar
  42. 42.
    Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, Vol. I. Springer, New York, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181Google Scholar
  43. 43.
    Maxwell Garnett J.C.: VII. Colours in metal glasses, in metallic films, and in metallic solutions. II. Philos. Trans. R. Soc. A 205(387-401), 237–288 (1906)ADSGoogle Scholar
  44. 44.
    McCarthy John E.: Geometric interpolation between Hilbert spaces. Ark.Mat. 30(2), 321–330 (1992)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Medková D.: The Laplace Equation: Boundary Value Problems on Bounded and Un bounded Lipschitz Domains. Springer, Berlin (2018)zbMATHGoogle Scholar
  46. 46.
    Milton G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  47. 47.
    Mitrea I.: On the spectra of elastostatic and hydrostatic layer potentials on curvilinear polygons. J. Fourier Anal. Appl. 8(5), 443–487 (2002)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque, 344, viii+241 (2012)Google Scholar
  49. 49.
    Nicorovici N.A., McPhedran R.C., Milton G.W.: Transport properties of a three phase composite material: the square array of coated cylinders. Proc. R. Soc. Lond. A 442(1916), 599–620 (1993)ADSGoogle Scholar
  50. 50.
    Nikoshkinen K.I., Lindell I.V.: Image solution for Poisson’s equation in wedge geometry. IEEE. Trans. Antennas Propag. 43(2), 179–187 (1995)ADSMathSciNetzbMATHGoogle Scholar
  51. 51.
    Perfekt K.-M., Putinar M.: Spectral bounds for the Neumann–Poincaré operator on planar domains with corners. J. Anal. Math. 124(1), 39–57 (2014)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Perfekt K.-M., Putinar M.: The essential spectrum of the Neumann–Poincaré operator on a domain with corners. Arch. Ration. Mech. Anal. 223(2), 1019–1033 (2017)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Qiao Y.: Double layer potentials on three-dimensional wedges and pseudodifferential operators on Lie groupoids. J. Appl. Math. Anal. Appl. 462(1), 428–447 (2018)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Qiao Y., Nistor V.: Single and double layer potentials on domains with conical points I: straight cones. Integr. Equ. Oper. Theory 72(3), 419–448 (2012)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Scharstein R.W.: Green’s function for the harmonic potential of the three-dimensional wedge transmission problem. IEEE. Trans. Antennas Propag. 52(2), 452–460 (2004)ADSGoogle Scholar
  56. 56.
    Schmüdgen K.: Unbounded Self-Adjoint Operators on Hilbert Space, Graduate Texts in Mathematics, Vol. 265. Springer, Dordrecht (2012)Google Scholar
  57. 57.
    Shelepov V.Yu.: On the index and spectrum of integral operators of potential type along Radon curves. Mat. Sb. 181(6), 751–778 (1990)MathSciNetGoogle Scholar
  58. 58.
    Valagiannopoulos C.A., Sihvola A.: Improving the electrostatic field concentration in a negative-permittivity wedge with a grounded “bowtie” configuration. Radio Sci. 48(3), 316–325 (2013)ADSGoogle Scholar
  59. 59.
    Verchota G.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59(3), 572–611 (1984)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Wallén H., Kettunen H., Sihvola A.: Surface modes of negative-parameter interfaces and the importance of rounding sharp corners. Metamaterials 2, 113–121 (2008)ADSGoogle Scholar
  61. 61.
    Yu S., Ammari H.: Plasmonic interaction between nanospheres. SIAM Rev. 60(2), 356–385 (2018)MathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of ReadingReadingUK

Personalised recommendations