Advertisement

Archive for Rational Mechanics and Analysis

, Volume 231, Issue 3, pp 1455–1486 | Cite as

Optimal Three Spheres Inequality at the Boundary for the Kirchhoff–Love Plate’s Equation with Dirichlet Conditions

  • Giovanni AlessandriniEmail author
  • Edi Rosset
  • Sergio Vessella
Article

Abstract

We prove a three spheres inequality with optimal exponent at the boundary for solutions to the Kirchhoff–Love plate’s equation satisfying homogeneous Dirichlet conditions. This result implies the Strong Unique Continuation Property at the Boundary (SUCPB). Our approach is based on the method of Carleman estimates, and involves the construction of an ad hoc conformal mapping preserving the structure of the operator and the employment of a suitable reflection of the solution with respect to the flattened boundary which ensures the needed regularity of the extended solution. To the authors’ knowledge, this is the first (nontrivial) SUCPB result for fourth-order equations with a bi-Laplacian principal part.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adolfsson V., Escauriaza L., Kenig C.: Convex domains and unique continuation at the boundary. Rev. Mat. Iberoam. 11(3), 513–525 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adolfsson V., Escauriaza L.: \({{C}^1, ^\alpha}\) domains and unique continuation at the boundary. Commun. Pure Appl. Math. 50, 935–969 (1997)CrossRefzbMATHGoogle Scholar
  3. 3.
    Agmon S.: Lectures on elliptic boundary value problems. Van Nostrand, Princeton (1965)zbMATHGoogle Scholar
  4. 4.
    Alessandrini G., Beretta E., Rosset E., Vessella S.: Optimal stability for inverse elliptic boundary value problems with unknown boundaries. Ann. Scuola Norm. Super. Pisa Cl. Sci. 29(4), 755–806 (2000)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Alessandrini G., Rondi L., Rosset E., Vessella S.: The stability for the Cauchy problem for elliptic equations. Inverse Probl. 25, 1–47 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Apraiz J., Escauriaza L., Wang G., Zhang C.: Observability inequalities and measurable sets. J. Eur. Math. Soc. (JEMS) 16(11), 2433–2475 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Banerjee A., Garofalo N.: Quantitative uniqueness for elliptic equations at the boundary of C 1, Dini domains. J. Differ. Equ. 261(12), 6718–6757 (2016)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Bourgain J., Wolff T.: A remark on gradients of harmonic functions in dimension \({\geq 3}\). Colloq. Math. 60/61(1), 253–260 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Canuto B., Rosset E., Vessella S.: Quantitative estimates of unique continuation for parabolic equations and inverse initial-boundary value problems with unknown boundaries. Trans. Am. Math. Soc. 354, 491–535 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Colombini F., Grammatico C.: Some remarks on strong unique continuation for the Laplace operator and its powers. Commun. Partial Differ. Equ. 24, 1079–1094 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Colombini F., Koch H.: Strong unique continuation for products of elliptic operators of second order. Trans. Am. Math. Soc. 362(1), 345–355 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cristo M., Rondi L.: Examples of exponential instability for inverse inclusion and scattering problems. Inverse Probl. 19, 685–701 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cristo M., Di Rondi L., Vessella S.: Stability properties of an inverse parabolic problem with unknown boundaries. Ann. Mat. Pura Appl.(4) 185(2), 223–255 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Escauriaza L., F. Fernàndez J.: Unique continuation for parabolic operators. Ark. Mat. 41(1), 35–60 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Escauriaza L., Fernàndez F.J., Vessella S.: Doubling properties of caloric functions. Appl. Anal. 85(1–3), 205–223 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Farwig R.: A note on the reflection principle for the biharmonic equation and the Stokes system. Acta Appl. Math. 37(1-2), 41–51 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Folland G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton (1995)Google Scholar
  18. 18.
    Garofalo N., Lin F.: Monotonicity properties of variational integrals, A p weights and unique continuation. Indiana Univ. Math. J. 35, 245–268 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gerasimov J.K.: The three-sphere theorem for a class of elliptic equations of higher order and a refinement of this theorem for a linear elliptic equation of second order. Am. Math. Soc. Transl. 72, 135–162 (1968)zbMATHGoogle Scholar
  20. 20.
    Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, New York (1983)CrossRefzbMATHGoogle Scholar
  21. 21.
    Hardy G.H., Littlewood J.E., Pólya G.: Inequalities. Cambridge University Press, Cambridge (1934)zbMATHGoogle Scholar
  22. 22.
    John F.: Continuation and reflection of solutions of partial differential equations. Bull. Am. Math. Soc. 63, 327–344 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kenig C. E., Wang W.: A note on boundary unique continuation for harmonic functions in non-smooth domains. Potential Anal. 8(2), 143–147 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kukavica I.: Quantitative uniqueness for second-order elliptic operators. Duke Math. J. 91, 225–240 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kukavica I., Nyström K.: Unique continuation on the boundary for Dini domains. Proc. Am. Math. Soc. 126(2), 441–446 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Landis E.M.: A three-spheres theorem. Dokl. Akad. Nauk SSSR 148, 277–279 (1963)MathSciNetGoogle Scholar
  27. 27.
    Le Borgne P.: Unicité forte pour le produit de deux opérateurs elliptiques d’ordre 2. Indiana Univ. Math. J. 50, 353–381 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Rousseau, J. Le., Robbiano, L.: Spectral inequality and resolvent estimate for the bi-Laplace operator. https://arxiv.org/pdf/1509.02098
  29. 29.
    Lin C.-L., Nagayasu S., Wang J.-N.: Quantitative uniqueness for the power of the Laplacian with singular coefficients. Ann. Scuola Norm. Super. Pisa Cl. Sci. (5) 10(3), 513–529 (2011)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Morassi A., Rosset E.: Detecting rigid inclusions, or cavities, in an elastic body. J. Elast. 73(1–3), 101–126 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Morassi A., Rosset E.: Stable determination of cavities in elastic bodies. Inverse Probl. 20(2), 453–480 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Morassi, A., Rosset, E.: Uniqueness and stability in determining a rigid inclusion in an elastic body. Mem. Am. Math. Soc. 200(938) (2009)Google Scholar
  33. 33.
    Morassi A., Rosset E., Vessella S.: Size estimates for inclusions in an elastic plate by boundary measurements. Indiana Univ. Math. J. 56(5), 2325–2384 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Morassi A., Rosset E., Vessella S.: Detecting general inclusions in elastic plates. Inverse Probl. 25, 045009 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Morassi A., Rosset E., Vessella S.: Recent results about the detection of unknown boundaries and inclusions in elastic plates. J. Inverse Ill-Posed Probl. 21(2), 311–352 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Savina T.V.: On the dependence of the reflection operator on boundary conditions for biharmonic functions. J. Math. Anal. Appl. 370(2), 716–725 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Shirota T.: A remark on the unique continuation theorem for certain fourth order elliptic equations. Proc. Jpn. Acad. 36, 571–573 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Sincich E.: Stability for the determination of unknown boundary and impedance with a Robin boundary condition. SIAM J. Math. Anal. 42(6), 2922–2943 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Sincich E., Vessella S.: Wave equation with Robin condition, quantitative estimates of strong unique continuation at the boundary. Rend. Istit. Mat. Univ. Trieste 48, 221–243 (2016)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Talenti G.: Sopra una disuguaglianza integrale. Ann. Scuola Norm. Super. Pisa Cl. Sci. 21(2), 167–188 (1967)zbMATHGoogle Scholar
  41. 41.
    Vessella S.: Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates. Inverse Probl. 24(2), 023001 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Vessella S.: Quantitative estimates of strong unique continuation for wave equations. Math.Ann. 367(1–2), 135–164 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Matematica e GeoscienzeUniversità degli Studi di TriesteTriesteItaly
  2. 2.Dipartimento di Matematica e Informatica “Ulisse Dini”Università degli Studi di FirenzeFirenzeItaly

Personalised recommendations