Continuity for the Monge Mass Transfer Problem in Two Dimensions

  • Qi-Rui Li
  • Filippo Santambrogio
  • Xu-Jia Wang


In this paper, we prove the continuity of the monotone optimal mapping of the Monge mass transfer problem in two dimensions under certain conditions on the domains and the mass distributions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material (11 kb)
Supplementary material 1 (mp 11 kb)
205_2018_1294_MOESM2_ESM.mps (5 kb)
Supplementary material 2 (mps 6 kb)
205_2018_1294_MOESM3_ESM.mps (12 kb)
Supplementary material 3 (mps 12 kb)
205_2018_1294_MOESM4_ESM.mps (9 kb)
Supplementary material 4 (mps 10 kb)
205_2018_1294_MOESM5_ESM.mps (7 kb)
Supplementary material 5 (mps 8 kb)


  1. 1.
    Ambrosio, L.: Lecture notes on optimal transport problems, Mathematical Aspects of Evolving Interfaces. In: Lecture Notes in Math. vol. 1812, pp. 1–52 2003Google Scholar
  2. 2.
    Ambrosio L., Kirchheim B., Pratelli A.: Existence of optimal transport maps for crystalline norms. Duke Math. J. 125, 207–241 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Caffarelli L.: The regularity of mappings with a convex potential. J. Am. Math. Soc. 5, 99–104 (1992)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Caffarelli L.: Boundary regularity of maps with convex potentials II. Ann. Math. 144, 453–496 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Caffarelli L., Feldman M., McCann R.: Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs. J. Am. Math. Soc. 15, 1–26 (2002)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Colombo M., Indrei E.: Obstructions to regularity in the classical Monge problem. Math. Res. Lett. 21, 697–712 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Champion T., De Pascale L., (2010) The Monge problem for strictly convex norms in R d. J. Eur. Math. Soc. 12: 1355–1369MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Champion,T.,De Pascale,L.:TheMonge problemin R d. Duke Math. J. 157, 551–572 2011MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    De Pascale L., Louet J., Santambrogio F.: The Monge problem with vanishing gradient penalization: vortices and asymptotical profile. J. Math. Pures Appl. 106(2), 237–279 (2016)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Evans, L.C., Gangbo,W.: Differential equations methods for the Monge–Kantorovich mass transfer problem. Mem. Amer. Math. Soc. 137(653), viii+66 1999Google Scholar
  11. 11.
    Feldman M., McCann R.: Uniqueness and transport density in Monge’s mass transportation problem. Calc. Var. PDE 15, 81–113 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Figalli A., Kim Y.-M., McCann R.: Hölder continuity and injectivity of optimal maps. Arch. Ration. Mech. Anal. 209, 747–795 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Fragalà I., Gelli M.S., Pratelli A.: Continuity of an optimal transport in Monge problem. J. Math. Pures Appl. 84, 1261–1294 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kantorovich L.: On the transfer of masses. Dokl. Acad. Nauk. USSR 37, 227–229 (1942)Google Scholar
  15. 15.
    Kantorovich L.: On a problem of Monge. Uspekhi Mat. Nauk. 3, 225–226 (1948)Google Scholar
  16. 16.
    Li Q.-R., Santambrogio F., Wang X.-J.: Regularity in Monge’s mass transfer problem. J. Math. Pures Appl.(9) 102(6), 1015–1040 (2014)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Liu J.K., Trudinger N.S., Wang X.-J.: Interior \({{C}^2,\alpha}\) regularity for potential functions in optimal transportation. Commun. Partial Differ. Equ. 35, 165–184 (2010)CrossRefMATHGoogle Scholar
  18. 18.
    Liu J.K., Trudinger N. S., Wang X.-J.: On asymptotic behaviour and W 2,p regularity of potentials in optimal transportation. Arch. Ration. Mech. Anal. 215, 867–905 (2015)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Loeper G.: On the regularity of solutions of optimal transportation problems. Acta Math. 202, 241–283 (2009)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Loeper G., Villani C.: Regularity of optimal transport in curved geometry: the non focal case. Duke Math. J. 151, 431–485 (2010)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ma X.N., Trudinger N.S., Wang X.-J.: Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177, 151–183 (2005)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Monge, G., Mémoire sur la theorie des Déblais et des Remblais. In: Historie de l’Académie Royale des Sciences de Paris, avec les Mémories de Mathématique et de Physique pour la Même année, pp. 666–740 1781Google Scholar
  23. 23.
    Santambrogio F.: Optimal Transport for Applied Mathematicians, Progress in Nonlinear Differential Equations and Their Applications, p. 87, Birkhäuser, Basel 2015Google Scholar
  24. 24.
    Sudakov V.N.: Geometric problems in the theory of infinite dimensional probability distributions. Proc. Steklov Inst. 141, 1–178 (1979)MathSciNetGoogle Scholar
  25. 25.
    Villani C.: Optimal Transport, Old and New. Springer, Berlin (2009)CrossRefMATHGoogle Scholar
  26. 26.
    Trudinger N.S., Wang X.-J.: On the Monge mass transfer problem. Calc. Var. PDE 13, 19–31 (2001)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Trudinger N.S., Wang X.-J.: On the second boundary value problem for Monge–Ampère type equations and optimal transportation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8, 143–174 (2009)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Mathematics and Its ApplicationsAustralian National UniversityCanberraAustralia
  2. 2.Laboratoire de Mathématiques d’OrsayUniv. Paris-Sud, CNRS, Université Paris-SaclayOrsay cedexFrance

Personalised recommendations