Archive for Rational Mechanics and Analysis

, Volume 231, Issue 1, pp 285–317 | Cite as

On the Size of Chaos in the Mean Field Dynamics

  • Thierry Paul
  • Mario PulvirentiEmail author
  • Sergio Simonella


We consider the error arising from the approximation of an N-particle dynamics with its description in terms of a one-particle kinetic equation. We estimate the distance between the j-marginal of the system and the factorized state, obtained in a mean field limit as \({N \to \infty}\) . Our analysis relies on the evolution equation for the “correlation error” rather than on the usual BBGKY hierarchy. The rate of convergence is shown to be \({O(j^2/ N)}\) in any bounded interval of time (size of chaos), as expected from heuristic arguments. Our formalism applies to an abstract hierarchical mean field model with bounded collision operator and a large class of initial data, covering (a) stochastic jump processes converging to the homogeneous Boltzmann and the Povzner equation and (b) quantum systems giving rise to the Hartree equation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to Joaquin Fontbona and Stéphane Mischler for helpful discussions. This work has been partially carried out thanks to the support of the LIA AMU-CNRS-ECM-INdAM Laboratoire Yapatia des Sciences Mathématiques (LYSM) and the A*MIDEX Project (no. ANR-11-IDEX-0001-02) funded by the “Investissements d’Avenir” French Government program, managed by the French National Research Agency (ANR). T.P. also thanks the Dipartimento di Matematica, Sapienza Università di Roma, for its kind hospitality during the elaboration of this work. S. S. acknowledges the support of the German Research Foundation (DFG no. 269134396).


  1. 1.
    Arkeryd, L., Caprino, S., Ianiro, N.: The homogeneous Boltzmann hierarchy and statistical solutions to the homogeneous Boltzmann equation. J. Stat. Phys. 63(1–2), 345–361 (1991)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Benedikter, N., Porta, M., Schlein, B.: Effective Evolution Equations from Quantum Dynamics, SpringerBriefs in Mathematical Physics, 2016Google Scholar
  3. 3.
    Bardos, C., Golse, F., Mauser, N.: Weak coupling limit of the \(N\) particles Schrödinger equation. Methods Appl. Anal. 7(2), 275–293 (2000)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bardos, C., Erdös, L., Golse, F., Mauser, N., Yau, H.-T.: Derivation of the Schrödinger-Poisson equation from the quantum N-body problem. C. R. Acad. Sci. Paris, Sér. I 334, 515–520 (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Benedetto, D., Castella, F., Esposito, R., Pulvirenti, M.: Some considerations on the derivation of the nonlinear Quantum Boltzmann equation. J. Stat. Phys. 116(114), 381–410 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Boldrighini, C., De Masi, A., Pellegrinotti, A.: Non equilibrium fluctuations in particle systems modelling Reaction-Diffusion equations. Stochastic Processes and Appl. 42, 1–30 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Braun, W., Hepp, K.: The Vlasov Dynamics and Its Fluctuations in the \(1/N\) Limit of Interacting Classical Particles. Commun. Math. Phys. 56, 101–113 (1977)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Caprino, S., Pulvirenti, M.: A cluster expansion approach to a one-dimensional Boltzmann equation: a validity result Comm. Math. Phys. 166(3), 603–631 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Caprino, S.De, Masi, A., Presutti, E., Pulvirenti, M.: A derivation of the Broadwell equation. Comm. Math. Phys. 135(3), 443–465 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Caprino, S., Pulvirenti, M., Wagner, W.: A particle systems approximating stationary solutions to the Boltzmann equation. SIAM J. Math. Anal. 4, 913–934 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cercignani, C.: The Grad limit for a system of soft spheres. Comm. Pure Appl. Math. 36, 479–494 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chen, L., Lee, J. Oon, Schlein, B.: Rate of Convergence Towards Hartree Dynamics. J. Stat. Phys. 144, 872–903 2011.Google Scholar
  13. 13.
    De Masi, A., Presutti, E.: Mathematical methods for hydrodynamical limits. Lecture Notes in Mathematics 1501, Springer-Verlag, 1991Google Scholar
  14. 14.
    De Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Glauber evolution with Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity 7, 633–696 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    De Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Glauber evolution with Kac potentials. II. Fluctuations. Nonlinearity 9, 27–51 (1996)ADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    De Masi, A., Presutti, E., Tsagkarogiannis, D., Vares, M.E.: Truncated correlations in the stirring process with births and deaths. Electronic Journal of Probability. 17, 1–35 (2012)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Dobrushin, R.: Vlasov equations. Funct. Anal. Appl. 13, 115–123 (1979)CrossRefzbMATHGoogle Scholar
  18. 18.
    Erdös, L., Yau, H.-T.: Derivation of the nonlinear Schrdinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5(6), 1169–1205 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ginibre, J., Velo, G.: The classical field limit of scattering theory for nonrelativistic many-boson systems. I. Comm. Math. Phys. 66, 37–76 (1979)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ginibre, J., Velo, G.: The classical field limit of scattering theory for nonrelativistic many-boson systems. II. Comm. Math. Phys. 68, 451–768 (1979)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Golse, F., Mouhot, C., Paul, T.: On the Mean Field and Classical Limits of Quantum Mechanics. Commun. Math. Phys. 343, 165–205 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Golse, F., Paul, T., Pulvirenti, M.: On the Derivation of the Hartree Equation from the \(N\)-Body Schrödinger Equation: Uniformity in the Planck Constant, arXiv:1606.06436
  23. 23.
    Graham, C., Méléard, S.: Stochastic particle approximations for generalized Boltzmann models and convergence estimates. Annals of Probability 25, 115–132 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Grünbaum, F.A.: Propagation of chaos for the Boltzmann equation. Arch. Rational Mech. Anal. 42, 323–345 (1971)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hauray, M., Jabin, P.-E.: Particles approximations of Vlasov equations with singular forces: Propagation of chaos. Annales scientifiques de l'ENS 48(4), 891–940 (2015)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Hauray, M., Mischler, S.: On Kac's chaos and related problems. Journal of Functional Analysis 266, 6055–6157 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hepp, K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35 1974Google Scholar
  28. 28.
    Kac, M.: Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley and Los Angeles, 1956Google Scholar
  29. 29.
    Kac, M.: Probability and related topics in physical sciences. Interscience, London-New York (1959)zbMATHGoogle Scholar
  30. 30.
    Knowles, A., Pickl, P.: Mean-Field Dynamics: Singular Potentials and Rate of Convergence. Com. Math. Physics 298, 101–138 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Lachowicz, M., Pulvirenti, M.: A stochastic system of particles modelling the Euler equation. Arch. Ration. Mech. Anal. 109, 81–93 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Mischler, S., Mouhot, C.: Kac's program in kinetic theory. Inventiones mathematicae 193, 1–147 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Mischler, S., Mouhot, C., Wennberg, B.: A new approach to quantitative propagation of chaos for drift, diffusion and jump processes. Probability Theory and Related Fields 161(1–2), 1–59 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Neunzert, H., Wick, J.: Die Approximation der Lösung von Integro-Differentialgleichungen durch endliche Punktmengen. Lecture Notes in Math. 395, 275–290 1974, Springer, BerlinGoogle Scholar
  35. 35.
    Pulvirenti, M., Simonella, S.: The Boltzmann-Grad limit of a hard sphere system: analysis of the correlation error. Inventiones mathematicae 207(3), 1135–1237 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Pulvirenti, M., Wagner, W., Zavelani Rossi, M.B.: Convergence of particle schemes for the Boltzmann equation. Eur. J. Mech. B/Fluids 13(3), 339–351 (1994)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Rjasanow, S., Wagner, W.: Stochastic Numerics for the Boltzmann Equation, Springer Series in Computational Mathematics 37 2005Google Scholar
  38. 38.
    Spohn, H.: Kinetic equations from Hamiltonian dynamics. Rev. Mod. Phys. 52(3), 600–640 (1980)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Sznitman, A.-S.: Topics in propagation of chaos. In: École d'été de Probabilités de Saint-Flour XIX 1989, Lecture Notes in Math. 1464, Springer, Berlin, 165–251, 1991Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CMLS, Ecole polytechnique, CNRS, Université Paris-SaclayPalaiseau CedexFrance
  2. 2.International Research Center on the Mathematics and Mechanics of Complex Systems, MeMoCSUniversity of L’AquilaL’AquilaItaly
  3. 3.Zentrum Mathematik, TU MünchenGarchingGermany

Personalised recommendations