Advertisement

Archive for Rational Mechanics and Analysis

, Volume 231, Issue 1, pp 189–232 | Cite as

Stationary Solutions of the Flat Vlasov–Poisson System

  • Jürgen Batt
  • Enno Jörn
  • Yi Li
Article
  • 52 Downloads

Abstract

The stationary solutions are triples \({\left(f, \rho, U\right)}\) of three functions: the distribution function \({f = f \left(x, v\right)}\), the potential \({U = U \left(x\right)}\) and the local density \({\rho = \rho \left(x\right)}\), \({x, v \in \mathbb{R}^2}\), which are linked by the Vlasov–Poisson system. We prove the existence of wide classes of spherically symmetric stationary solutions with the property that \({\rho}\) depends on \({\left|x\right| = r}\) and f on the energy \({E:= U\left(x\right) + \frac{v^2}2}\). First we answer the question of which given functions \({\rho}\) are the local density of a stationary solution (inverse problem). Our result is (up to technicalities) that every \({\rho \geq 0}\) which is strictly decreasing on an interval \({\left[0, R\right)}\) and zero on its complement (\({R \leqq \infty}\)) belongs to this class. Second, we ask: which given functions q induce distribution functions f of the form \({f=q \left(-E_0 -E \right)}\) (\({E_0 \geqq 0}\)) of a stationary solution? (direct problem). This question is answered for many q which are positive for positive and vanish for negative arguments in an approximative and constructive way which is based on numerical methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andréasson H., Rein G.: On the rotation curves for axially symmetric disk solutions of the Vlasov–Poisson system. Mon. Not. R. Astron. Soc. 446, 3932–3942 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Batt J., Faltenbacher W., Horst E.: Stationary spherically symmetric models in stellar dynamics. Arch. Ration. Mech. Anal. 93, 159–83 (1986)Google Scholar
  3. 3.
    Batt J., Pfaffelmoser K.: On the radius continuity of the models of polytropic gas spheres which correspond to the positive solutions of the generalized Emden–Fowler equation. Math. Methodes Appl. Sci. 10, 499–516 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Batt J., Li Y.: The positive solutions of the Matukuma equation and the problem of finite radius and finite mass. Arch. Ration. Mech. Anal. 198, 613–675 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Binney J., Tremaine S.: Galactic Dynamics. Princeton University Press, Princeton (1987)zbMATHGoogle Scholar
  6. 6.
    Dietz S.: Flache Lösungen des Vlasov–Poisson-Systems. PhD thesis, Ludwig-Maximilians-Universität Munich 2002Google Scholar
  7. 7.
    Dubinski J., Kuijken K.: Nearly self-consistent disk-bulge-halo models for galaxies. Mon. Not. R. Astron. Soc. 277, 1341–1353 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    Dubinski J., Widrow L.: Equilibrium disk-bulge-halo models for the Milky Way and Andromeda galaxies. Astrophys. J. 631, 838–855 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Fiřt R., Rein G.: Stability of disk-like galaxies—Part I: stability via reduction. Analysis 26, 507–525 (2006)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Fiřt R.: Stability of disk-like galaxies—Part II: the Kuzmin disk. Analysis 27, 405–424 (2007)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Fiřt R., Rein G., Seehafer M.: Flat galaxies with dark matter halos—existence and stability. Commun. Math. Phys. 291, 225–255 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Geigant E.: Inversionsmethoden zur Konstruktion von stationären Lösungen des selbst-konsistenten Problems des Stellardynamik. Diplomarbeit, Ludwig-Maximilians-Universität Munich 1993Google Scholar
  13. 13.
    Gradshteyn I.S., Ryzhik I.M.: Table of Integrals, Series, and Products. Academic Press, Boston (2000)zbMATHGoogle Scholar
  14. 14.
    Guo Y.: Variational method in polytropic galaxies. Arch. Ration. Mech. Anal. 130, 163–182 (1995)CrossRefGoogle Scholar
  15. 15.
    Guo Y., Rein G.: Stable steady states in stellar dynamics. Arch. Ration. Mech. Anal. 147, 225–243 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Guo Y., Rein G.: Existence and stability of Camm type steady states in galactic dynamics. Indiana Univ. Math. J. 48, 1237–1255 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Guo Y., Rein G.: Isotropic steady states in galactic dynamics. Commun. Math. Phys. 219, 607–629 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Korn G.A., Korn T.M.: Mathematical Handbook for Scientists and Engineers. McGraw-Hill, New York (1961)zbMATHGoogle Scholar
  19. 19.
    Lieb E.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Natanson I.P.: Theorie der Funktionen einer reellen Veränderlichen. Akademie-Verlag, Berlin (1961)zbMATHGoogle Scholar
  21. 21.
    Rein G.: Collisionless kinetic equations from astrophysics—the Vlasov–Poisson system. In: Dafermos, C.M., Feireisl, E. (eds.) Handbook of Differential Equations: Evolutionary Equations, Vol. 3, 383–476. Elsevier, Amsterdam 2007Google Scholar
  22. 22.
    Rein G.: Flat steady states in stellar dynamics—existence and stability. Commun. Math. Phys. 205, 229–247 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Stoer J.: Einführung in die Numerische Mathematik I. Springer, Berlin (1972)CrossRefzbMATHGoogle Scholar
  24. 24.
    Willers F.A.: Methoden der Praktischen Analysis. Walter de Gruyter, Berlin (1957)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematisches Institut der Universität MünchenMunichGermany
  2. 2.Department of MathematicsCalifornia State UniversityNorthridgeUSA

Personalised recommendations