Advertisement

Archive for Rational Mechanics and Analysis

, Volume 230, Issue 2, pp 701–733 | Cite as

Thermodynamic Limit of Crystal Defects with Finite Temperature Tight Binding

  • Huajie Chen
  • Jianfeng Lu
  • Christoph Ortner
Article
  • 69 Downloads

Abstract

We consider a tight binding model for localised crystalline defects with electrons in the canonical ensemble (finite Fermi temperature) and nuclei positions relaxed according to the Born–Oppenheimer approximation. We prove that the limit model as the computational domain size grows to infinity is formulated in the grand-canonical ensemble for the electrons. The Fermi-level for the limit model is fixed at a homogeneous crystal level, independent of the defect or electron number in the sequence of finite-domain approximations. We quantify the rates of convergence for the nuclei configuration and for the Fermi-level.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alavi, A., Kohanoff, J., Parrinello, M., Frenkel, D.: Ab initio molecular dynamics with excited electrons. Phys. Rev. Lett. 73, 2599–2602 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    Alicandro, R., De Luca, L., Garroni, A., Ponsiglione, M.: Metastability and dynamics of discrete topological singularities in two dimensions: A \(\gamma \)-convergence approach. Arch. Ration. Mech. Anal. 214, 269–330 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Blanc, X., Le Bris, C.: Lions, V: From molecular models to continuum mechanics. Arch. Rat. Mech. Anal. 164, 341–381 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Blanc, X., Le Bris, C.: Lions, V: On the energy of some microscopic stochastic lattices. Part I. Arch. Rat. Mech. Anal. 184, 303–340 (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    Cancès, E., Bris, C.L.: Mathematical modeling of point defects in materials science. Math. Models Methods Appl. Sci. 23, 1795–1859 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cancès, E., Deleurence, A., Lewin, M.: A new approach to the modelling of local defects in crystals: the reduced Hartree-Fock case. Commun. Math. Phys. 281, 129–177 (2008)ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Cancès, E., Deleurence, A., Lewin, M.: Non-perturbative embedding of local defects in crystalline materials. J. Phys. Condens. Matter 20, 294213 (2008)CrossRefGoogle Scholar
  8. 8.
    Cancès, E., Ehrlacher, V.: Local defects are always neutral in the Thomas-Fermi-von Weiszäcker theory of crystals. Arch. Ration. Mech. Anal. 202, 933–973 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cancès, E., Lewin, M.: The dielectric permittivity of crystals in the reduced Hartree-Fock approximation. Arch. Ration. Mech. Anal. 197, 139–177 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Catto, I., Le Bris, C., Lions, P.-L.: The Mathematical Theory of Thermodynamic Limits: Thomas-Fermi Type Models. Oxford Mathematical Monographs. Oxford University Press, Oxford (1998)zbMATHGoogle Scholar
  11. 11.
    Catto, I.,Le Bris, C.,Lions, P.-L.: On the thermodynamic limit for Hartree-Fock type models. Ann. Inst. H. Poincaré, Anal. 18, 687–760 (2001)Google Scholar
  12. 12.
    Chen, H.,Lu, J.,Ortner, C.: Thermodynamic limit of crystal defects with finite temperature tight binding. arXiv:1607.06850v2
  13. 13.
    Chen, H.,Nazar, Q.,Ortner, C.: Geometry equilibration of crystalline defects in quantum and atomistic descriptions. arXiv:1709.02770
  14. 14.
    Chen, H., Ortner, C.: QM/MM methods for crystalline defects. Part 1: Locality of the tight binding model. Multiscale Model. Simul. 14, 232–264 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chen, H., Ortner, C.: QM/MM methods for crystalline defects. Part 2: Consistent energy and force-mixing. Multiscale Model. Simul. 15, 184–214 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Chen, J., Lu, J.: Analysis of the divide-and-conquer method for electronic structure calculations. Math. Comput. 85, 2919–2938 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    E, W.,Lu, J.: The elastic continuum limit of the tight binding model. Chin. Ann. Math. Ser. B 28, 665–675 (2007)Google Scholar
  18. 18.
    E, W.,Lu, J.: The electronic structure of smoothly deformed crystals: Cauchy-Born rule for the nonlinear tight-binding model. Commun. Pure Appl. Math. 63, 1432–1468 (2010)Google Scholar
  19. 19.
    E, W.,Lu, J.: The electronic structure of smoothly deformed crystals: Wannier functions and the Cauchy–Born rule. Arch. Ration. Mech. Anal. 199, 407–433 (2011)Google Scholar
  20. 20.
    E, W.,Lu, J.: The Kohn–Sham equation for deformed crystals. Mem. Am. Math. Soc. 221(1040) (2013)Google Scholar
  21. 21.
    Ehrlacher, V., Ortner, C., Shapeev, A.: Analysis of boundary conditions for crystal defect atomistic simulations. Arch. Ration. Mech. Anal. 222, 1217–1268 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ercolessi, F.: Lecture notes on tight-binding molecular dynamics and tight-binding justification of classical potentials. Lecture notes (2005)Google Scholar
  23. 23.
    Finnis, M.: Interatomic Forces in Condensed Matter. Oxford University Press, Oxford (2003)CrossRefGoogle Scholar
  24. 24.
    First-principles calculations for point defects in solids: Freysoldt, C., B, G., Hickel, T., Neugebauer, J., Kresse, G., Janotti, A., Van de Walle, C.G. Rev. Mod. Phys. 86, 253–305 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Goedecker, S., Teter, M.: Tight-binding electronic-structure calculations and tight-binding molecular dynamics with localized orbitals. Phys. Rev. B 51, 9455–9464 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    Gontier, D., Lahbabi, S.: Supercell calculations in the reduced Hartree-Fock model for crystals with local defects. AMRX 2017, 1–64 (2017)MathSciNetGoogle Scholar
  27. 27.
    Goringe, C., Bowler, D., Hernández, E.: Tight-binding modelling of materials. Rep. Prog. Phys. 60, 1447–1512 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    Hudson, T., Ortner, C.: Analysis of stable screw dislocation configurations in an anti-plane lattice model. SIAM J. Math. Anal. 41, 291–320 (2015)CrossRefzbMATHGoogle Scholar
  29. 29.
    Kittle, C.: Introduction to Solid State Physics. Wiley, New York (1996)Google Scholar
  30. 30.
    Li, X.,Lin, L.,Lu, J.: PEXSI-\(\Sigma \): a Green's function embedding method for Kohn–Sham density functional theory. Ann. Math. Sci. Appl. (in press). arXiv:1606.00515
  31. 31.
    Lieb, E., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Luskin, M., Ortner, C.: Atomistic-to-continuum-coupling. Acta Numer. 22, 397–508 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Martin, R.: Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  34. 34.
    Mermin, N.: Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441–A1443 (1965)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Nazar, F., Ortner, C.: Locality of the Thomas-Fermi-von Weizsäcker equations. Arch. Ration. Mech. Anal. 224, 817–870 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Papaconstantopoulos, D.: Handbook of the Band Structure of Elemental Solids, From \(Z = 1\) To \(Z = 112\). Springer, New York, 2015Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesBeijing Normal UniversityBeijingChina
  2. 2.Departments of Mathematics, Physics and ChemistryDuke UniversityDurhamUSA
  3. 3.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations