Advertisement

Archive for Rational Mechanics and Analysis

, Volume 230, Issue 2, pp 493–538 | Cite as

Boundary Regularity for the Porous Medium Equation

  • Anders Björn
  • Jana Björn
  • Ugo Gianazza
  • Juhana Siljander
Open Access
Article
  • 119 Downloads

Abstract

We study the boundary regularity of solutions to the porous medium equation \({u_t = \Delta u^m}\) in the degenerate range \({m > 1}\). In particular, we show that in cylinders the Dirichlet problem with positive continuous boundary data on the parabolic boundary has a solution which attains the boundary values, provided that the spatial domain satisfies the elliptic Wiener criterion. This condition is known to be optimal, and it is a consequence of our main theorem which establishes a barrier characterization of regular boundary points for general—not necessarily cylindrical—domains in \({{\bf R}^{n+1}}\). One of our fundamental tools is a new strict comparison principle between sub- and superparabolic functions, which makes it essential for us to study both nonstrict and strict Perron solutions to be able to develop a fruitful boundary regularity theory. Several other comparison principles and pasting lemmas are also obtained. In the process we obtain a rather complete picture of the relation between sub/superparabolic functions and weak sub/supersolutions.

References

  1. 1.
    Abdulla, U.G.: On the Dirichlet problem for the nonlinear diffusion equation in non-smooth domains. J. Math. Anal. Appl. 260, 384–403 (2001)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Abdulla, U.G.: Well-posedness of the Dirichlet problem for the non-linear diffusion equation in non-smooth domains. Trans. Am. Math. Soc. 357, 247–265 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183, 311–341 (1983)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Andreucci, D.: \(L^\infty _{\rm loc}\)-estimates for local solutions of degenerate parabolic equations. SIAM J. Math. Anal. 22, 138–145 (1991)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Aronson, D.G., Crandall, M.G., Peletier, L.A.: Stabilization of solutions of a degenerate nonlinear diffusion problem. Nonlinear Anal. 6, 1001–1022 (1982)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Aronson, D.G., Peletier, L.A.: Large time behaviour of solutions of the porous medium equation in bounded domains. J. Differ. Equ. 39, 378–412 (1981)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Avelin, B., Lukkari, T.: Lower semicontinuity of weak super-solutions to the porous medium equation. Proc. Am. Math. Soc. 143, 3475–3486 (2015)CrossRefMATHGoogle Scholar
  8. 8.
    Bauer, H.: Axiomatische Behandlung des Dirichletschen Problems für elliptische und parabolische Differentialgleichungen. Math. Ann. 146, 1–59 (1962)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Björn, A., Björn, J., Gianazza, U.: The Petrovskiĭ criterion and barriers for degenerate and singular \(p\)-parabolic equations Math. Ann. 368, 885–904 (2017)MathSciNetMATHGoogle Scholar
  10. 10.
    Björn, A., Björn, J., Gianazza, U., Parviainen, M.: Boundary regularity for degenerate and singular parabolic equations. Calc. Var. Partial Differ. Equ. 52, 797–827 (2015)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Björn, A., Björn, J., Parviainen, M.: The tusk condition and Petrovskiĭ criterion for the normalized \(p\)-parabolic equation. Preprint, (2017). arXiv:1712.06807
  12. 12.
    Bögelein, V., Duzaar, F., Gianazza, U.: Porous medium type equations with measure data and potential estimates. SIAM J. Math. Anal. 45, 3283–3330 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bögelein, V., Duzaar, F., Gianazza, U.: Very weak solutions of singular porous medium equations with measure data. Commun. Pure Appl. Anal. 14, 23–49 (2015)MathSciNetMATHGoogle Scholar
  14. 14.
    Bögelein, V., Lukkari, T., Scheven, C.: The obstacle problem for the porous medium equation. Math. Ann. 363, 455–499 (2015)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Bögelein, V., Lehtelä, P., Sturm, S.: Regularity of weak solutions and supersolutions to the porous medium equation. Preprint, (2018). arXiv:1801.05249
  16. 16.
    Dahlberg, B.E.J., Kenig, C.E.: Non-negative solutions of the porous medium equation. Commun. Partial Differ. Equ. 9, 409–437 (1984)CrossRefMATHGoogle Scholar
  17. 17.
    Dahlberg, B.E.J., Kenig, C.E.: Non-negative solutions of the initial-Dirichlet problem for generalized porous medium equations in cylinders. Rev. Mat. Iberoam. 2, 267–305 (1986)CrossRefMATHGoogle Scholar
  18. 18.
    Dahlberg, B.E.J., Kenig, C.E.: Non-negative solutions to fast diffusions. Rev. Mat. Iberoam. 4, 11–29 (1988)CrossRefMATHGoogle Scholar
  19. 19.
    Daskalopoulos, P., Kenig, C.E.: Degenerate Diffusions. EMS Tracts in Mathematics 1. European Math. Soc, Zürich (2007)CrossRefGoogle Scholar
  20. 20.
    DiBenedetto, E.: A boundary modulus of continuity for a class of singular parabolic equations. J. Differ. Equ. 63, 418–447 (1986)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    DiBenedetto, E.: Degenerate Parabolic Equations. Universitext, Springer, New York (1993)CrossRefMATHGoogle Scholar
  22. 22.
    DiBenedetto, E.: Real Analysis. Birkhäuser Advanced Texts: Basler Lehrbücher, 2nd edn., Birkhäuser/Springer, New York, 2016Google Scholar
  23. 23.
    DiBenedetto, E., Gianazza, U., Vespri, V.: Harnack's Inequality for Degenerate and Singular Parabolic Equations. Springer Monographs in Mathematics, Springer, New York (2012)CrossRefMATHGoogle Scholar
  24. 24.
    Gariepy, R., Ziemer, W.P.: A regularity condition at the boundary for solutions of quasilinear elliptic equations. Arch. Ration. Mech. Anal. 67, 25–39 (1977)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. 3rd edn., Springer, 1998Google Scholar
  26. 26.
    Gilding, B.H., Peletier, L.A.: Continuity of solutions of the porous media equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. 8, 659–675 (1981)Google Scholar
  27. 27.
    Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations, 2nd edn. Dover, Mineola, NY (2006)MATHGoogle Scholar
  28. 28.
    Kilpeläinen, T., Lindqvist, P.: On the Dirichlet boundary value problem for a degenerate parabolic equation. SIAM J. Math. Anal. 27, 661–683 (1996)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Kinnunen, J., Lindqvist, P.: Definition and properties of supersolutions to the porous medium equation. J. Reine Angew. Math. 618, 135–168 (2008)MathSciNetMATHGoogle Scholar
  30. 30.
    Kinnunen, J., Lindqvist, P., Lukkari, T.: Perron's method for the porous medium equation. J. Eur. Math. Soc. (JEMS) 18, 2953–2969 (2016)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Korte, R., Kuusi, T., Parviainen, M.: A connection between a general class of superparabolic functions and supersolutions. J. Evol. Equ. 10, 1–20 (2010)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Kuusi, T.: Lower semicontinuity of weak supersolutions to nonlinear parabolic equations. Differ. Integr. Equ. 22, 1211–1222 (2009)MathSciNetMATHGoogle Scholar
  33. 33.
    Lebesgue, H.: Sur le problème de Dirichlet. C. R. Acad. Sci. Paris 154, 335–337 (1912)MATHGoogle Scholar
  34. 34.
    Lebesgue, H.: Conditions de régularité, conditions d'irrégularité, conditions d'impossibilité dans le problème de Dirichlet. C. R. Acad. Sci. Paris 178, 349–354 (1924)MATHGoogle Scholar
  35. 35.
    Lindqvist, P.: A criterion of Petrowsky's kind for a degenerate quasilinear parabolic equation. Revista Mat. Iberoam. 11, 569–578 (1995)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Littman, W., Stampacchia, G., Weinberger, H.F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Sc. Norm. Super. Pisa Cl. Sci. 17, 43–77 (1963)Google Scholar
  37. 37.
    Malý, J., Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations. Math. Surveys and Monographs 51, Amer. Math. Soc., Providence, RI, 1997Google Scholar
  38. 38.
    Petrowsky, I.: Über die Lösungen der ersten Randwertaufgabe der Wärmeleitungsgleichung. Uchebn. Zapiski Moskov. Gos. Univ. 2, 55–59 (1934)MATHGoogle Scholar
  39. 39.
    Petrowsky, I.: Zur ersten Randwertaufgabe der Wärmeleitungsgleichung. Compos. Math. 1, 383–419 (1935)MathSciNetMATHGoogle Scholar
  40. 40.
    Poincaré, H.: Sur les équations aux dérivées partielles de la physique mathématique. Amer. J. Math. 12, 211–294 (1890)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Vázquez, J.L.: The Porous Medium Equation. Oxford Mathematical Monographs. Oxford Univ. Press, Oxford (2007)Google Scholar
  42. 42.
    Vespri, V.: On the local behaviour of solutions of a certain class of doubly nonlinear parabolic equations. Manuscripta Math. 75, 65–80 (1992)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Watson, N.A.: Introduction to Heat Potential Theory. Mathematical Surveys and Monographs 182. Amer. Math. Soc, Providence, RI (2012)Google Scholar
  44. 44.
    Wiener, N.: The Dirichlet problem. J. Math. Phys. 3, 127–146 (1924)CrossRefMATHGoogle Scholar
  45. 45.
    Ziemer, W.P.: Interior and boundary continuity of weak solutions of degenerate parabolic equations. Trans. Am. Math. Soc. 271, 733–748 (1982)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsLinköping UniversityLinköpingSweden
  2. 2.Department of Mathematics “F. Casorati”Università di PaviaPaviaItaly
  3. 3.Department of Mathematics and StatisticsUniversity of JyväskyläJyväskyläFinland

Personalised recommendations