Archive for Rational Mechanics and Analysis

, Volume 230, Issue 2, pp 459–492 | Cite as

The Energy Measure for the Euler and Navier–Stokes Equations

  • Trevor M. LeslieEmail author
  • Roman Shvydkoy


The potential failure of energy equality for a solution u of the Euler or Navier–Stokes equations can be quantified using a so-called ‘energy measure’: the weak-\(*\) limit of the measures \({|u(t)|^2{\rm d}x}\) as t approaches the first possible blowup time. We show that membership of u in certain (weak or strong) \({L^q L^p}\) classes gives a uniform lower bound on the lower local dimension of \({\mathcal{E}}\); more precisely, it implies uniform boundedness of a certain upper s-density of \({\mathcal{E}}\). We also define and give lower bounds on the ‘concentration dimension’ associated to \({\mathcal{E}}\), which is the Hausdorff dimension of the smallest set on which energy can concentrate. Both the lower local dimension and the concentration dimension of \({\mathcal{E}}\) measure the departure from energy equality. As an application of our estimates, we prove that any solution to the 3-dimensional Navier–Stokes Equations which is Type-I in time must satisfy the energy equality at the first blowup time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35(6), 771–831 (1982)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cannone, M.: Ondelettes, paraproduits et Navier-Stokes. Diderot Editeur, Paris (1995). With a preface by Yves MeyerGoogle Scholar
  3. 3.
    Chae, D., Wolf, J.: Energy concentrations and Type I blow-up for the 3D Euler equations. ArXiv e-prints, June (2017)Google Scholar
  4. 4.
    Cheskidov, A., Constantin, P., Friedlander, S., Shvydkoy, R.: Energy conservation and Onsager's conjecture for the Euler equations. Nonlinearity 21(6), 1233–1252 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cheskidov, A., Friedlander, S., Shvydkoy, R.: On the energy equality for weak solutions of the 3D Navier–Stokes equations. In: Advances in mathematical fluid mechanics, pp. 171–175. Springer, Berlin (2010)Google Scholar
  6. 6.
    Constantin, P., Weinan, E., Titi, E.S.: Onsager's conjecture on the energy conservation for solutions of Euler's equation. Comm. Math. Phys. 165(1), 207–209 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    De Lellis, C., Székelyhidi Jr, L.: High dimensionality and h-principle in PDE. Bull. Amer. Math. Soc. (N.S.) 54(2), 247–282 (2017)Google Scholar
  8. 8.
    Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity 13(1), 249–255 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. Textbooks in Mathematics, revised edn. CRC Press, Boca Raton (2015)Google Scholar
  10. 10.
    Farwig, R., Taniuchi, Y.: On the energy equality of Navier-Stokes equations in general unbounded domains. Arch. Math. (Basel) 95(5), 447–456 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Isett, P.: A proof of onsager's conjecture.
  12. 12.
    Kukavica, I.: Role of the pressure for validity of the energy equality for solutions of the Navier-Stokes equation. J. Dyn. Differ. Equ. 18(2), 461–482 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ladyženskaja, O.A., Solonnikov, V.A., Ural'ceva, N.N.: Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence (1968)Google Scholar
  14. 14.
    Leslie, T.M., Shvydkoy, R.: Conditions implying energy equality for weak solutions of the Navier–Stokes equations. SIAM J. Math. Anal. 50(1), 870–890 (2018)Google Scholar
  15. 15.
    Lions, J.L.: Sur la régularité et l'unicité des solutions turbulentes des équations de Navier Stokes. Rend. Sem. Mat. Univ. Padova 30, 16–23 (1960)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Mattila, P.: Geometry of sets and measures in Euclidean spaces: Fractals and rectifiability, Volume 44 of Cambridge Studies in Advanced Mathematics Cambridge University Press, Cambridge (1995)Google Scholar
  17. 17.
    Onsager, L.: Statistical hydrodynamics. Nuovo Cimento (9), 6(Supplemento, 2(Convegno Internazionale di Meccanica Statistica)), 279–287 (1949)Google Scholar
  18. 18.
    Robinson, J.C., Rodrigo, J., Sadowski, W.: The three-dimensional Navier–Stokes equations: classical theory, volume 157 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2016)Google Scholar
  19. 19.
    Scheffer, V.: The Navier-Stokes equations on a bounded domain. Comm. Math. Phys. 73(1), 1–42 (1980)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Seregin, G., Šverák, V.: Navier-Stokes equations with lower bounds on the pressure. Arch. Ration. Mech. Anal. 163(1), 65–86 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Seregin, G., Šverák, V.: On type I singularities of the local axi-symmetric solutions of the Navier-Stokes equations. Comm. Partial Differ. Equ. 34(1–3), 171–201 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Serrin, J.: The initial value problem for the Navier–Stokes equations. In: Nonlinear Problems (Proc. Sympos., Madison, Wis., 1962), pp. 69–98. Univ. of Wisconsin Press, Madison (1963)Google Scholar
  23. 23.
    The energy equation for the Navier-Stokes system: Shinbrot, Marvin. SIAM J. Math. Anal. 5, 948–954 (1974)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Shvydkoy, R.: A geometric condition implying an energy equality for solutions of the 3D Navier-Stokes equation. J. Dynam. Differ. Equ. 21(1), 117–125 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Shvydkoy, R.: On the energy of inviscid singular flows. J. Math. Anal. Appl. 349(2), 583–595 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Shvydkoy, R.: Lectures on the Onsager conjecture. Discrete Contin. Dyn. Syst. Ser. S 3(3), 473–496 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Shvydkoy, R.: A study of energy concentration and drain in incompressible fluids. Nonlinearity 26(2), 425–436 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Statistics, and Computer ScienceUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations