Hysteresis and Phase Transitions in a Lattice Regularization of an Ill-Posed Forward–Backward Diffusion Equation



We consider a lattice regularization for an ill-posed diffusion equation with a trilinear constitutive law and study the dynamics of phase interfaces in the parabolic scaling limit. Our main result guarantees for a certain class of single-interface initial data that the lattice solutions satisfy asymptotically a free boundary problem with a hysteretic Stefan condition. The key challenge in the proof is to control the microscopic fluctuations that are inevitably produced by the backward diffusion when a particle passes the spinodal region.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barenblatt, G.I., Bertsch, M., Dal Passo, R., Ughi, M.: A degenerate pseudoparabolic regularization of a nonlinear forward-backward heat equation arising in the theory of heat and mass exchange in stably stratified turbulent shear flow. SIAM J. Math. Anal. 24(6), 1414–1439 (1993).  https://doi.org/10.1137/0524082 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bellettini, G., Bertini, L., Mariani, M., Novaga, M.: Convergence of the One-dimensional Cahn-Hilliard equation. SIAM J. Math. Anal. 44(5), 3458–3480 (2012).  https://doi.org/10.1137/120865410 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bellettini, G., Geldhauser, C., Novaga, M.: Convergence of a semidiscrete scheme for a forward-backward parabolic equation. Adv. Differ. Equ. 18(5/6), 495–522 (2013)MathSciNetMATHGoogle Scholar
  4. 4.
    Bertsch, M., Smarrazzo, F., Tesei, A.: Nonuniqueness of solutions for a class of forward-backward parabolic equations. Nonlinear Anal. 137, 190–212 (2016).  https://doi.org/10.1016/j.na.2015.12.028 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bonetti, E., Colli, P., Tomassetti, G.: A non-smooth regularization of a forward-backward parabolic equation. Math. Models Methods Appl. Sci. 27(4), 641–661 (2017).  https://doi.org/10.1142/S0218202517500129 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Braides, A.: Local Minimization, Variational Evolution and \({\varvec \Gamma}\) -Convergence. Lecture Notes in Mathematics, vol. 2094. Springer, Cham (2014)  https://doi.org/10.1007/978-3-319-01982-6
  7. 7.
    Elliott, C.M.: The Stefan problem with a nonmonotone constitutive relation. IMA J. Appl. Math. 35(2), 257–264 (1985).  https://doi.org/10.1093/imamat/35.2.257. Special issue: IMA conference on crystal growth (Oxford, 1985) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Esedoḡlu, S., Greer, J.B.: Upper bounds on the coarsening rate of discrete, ill-posed nonlinear diffusion equations. Commun. Pure Appl. Math. 62(1), 57–81 (2009).  https://doi.org/10.1002/cpa.20259 MathSciNetMATHGoogle Scholar
  9. 9.
    Esedoḡlu, S., Slepcev, D.: Refined upper bounds on the coarsening rate of discrete, ill-posed diffusion equations. Nonlinearity 21(12), 2759–2776 (2008).  https://doi.org/10.1088/0951-7715/21/12/002 ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Evans, L.C., Portilheiro, M.: Irreversibility and hysteresis for a forward-backward diffusion equation. Math. Models Methods Appl. Sci. 14(11), 1599–1620 (2004).  https://doi.org/10.1142/S0218202504003763 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Geldhauser, C., Novaga, M.: A semidiscrete scheme for a one-dimensional Cahn-Hilliard equation. Interfaces Free Bound. 13(3), 327–339 (2011).  https://doi.org/10.4171/IFB/260 MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gilding, B.H., Tesei, A.: The Riemann problem for a forward-backward parabolic equation. Physica D 239(6), 291–311 (2010).  https://doi.org/10.1016/j.physd.2009.10.006 ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gurevich, P., Shamin, R., Tikhomirov, S.: Reaction-diffusion equations with spatially distributed hysteresis. SIAM J. Math. Anal. 45(3), 1328–1355 (2013).  https://doi.org/10.1137/120879889 MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gurevich, P., Tikhomirov, S.: Rattling in spatially discrete diffusion equations with hysteresis (2016). ArXiv preprint no. arXiv:1601.05728
  15. 15.
    Helmers, M., Herrmann, M.: Interface dynamics in discrete forward-backward diffusion equations. Multiscale Model. Simul. 11(4), 1261–1297 (2013).  https://doi.org/10.1137/130915959 MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hilpert, M.: On uniqueness for evolution problems with hysteresis. Mathematical Models for Phase Change Problems (Óbidos. 1988), International Series of Numerical Mathematics, vol. 88, pp. 377–388. Birkhäuser, Basel (1989)Google Scholar
  17. 17.
    Holle, M.: Microstructure in Forward–Backward Lattice Diffusion. Master’s thesis, University of Bonn 2016Google Scholar
  18. 18.
    Höllig, K.: Existence of infinitely many solutions for a forward backward heat equation. Trans. Am. Math. Soc. 278(1), 299–316 (1983).  https://doi.org/10.2307/1999317 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Horstmann, D., Painter, K.J., Othmer, H.G.: Aggregation under local reinforcement: from lattice to continuum. Eur. J. Appl. Math. 15(5), 546–576 (2004).  https://doi.org/10.1017/S0956792504005571 MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Lafitte, P., Mascia, C.: Numerical exploration of a forward–backward diffusion equation. Math. Models Methods Appl. Sci. 22(6), 1250,004, 33 (2012).  https://doi.org/10.1142/S0218202512500042
  21. 21.
    Mascia, C., Terracina, A., Tesei, A.: Two-phase entropy solutions of a forward-backward parabolic equation. Arch. Ration. Mech. Anal. 194(3), 887–925 (2009).  https://doi.org/10.1007/s00205-008-0185-6 MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Mielke, A., Truskinovsky, L.: From discrete visco-elasticity to continuum rate-independent plasticity: rigorous results. Arch. Ration. Mech. Anal. 203(2), 577–619 (2012).  https://doi.org/10.1007/s00205-011-0460-9 MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Novick-Cohen, A., Pego, R.L.: Stable patterns in a viscous diffusion equation. Trans. Am. Math. Soc. 324(1), 331–351 (1991).  https://doi.org/10.2307/2001511 MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Otto, F., Reznikoff, M.: Slow motion of gradient flows. J. Differ. Equ. 237(2), 372–420 (2007).  https://doi.org/10.1016/j.jde.2007.03.007 ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Padrón, V.: Effect of aggregation on population revovery modeled by a forward–backward pseudoparabolic equation. Trans. Am. Math. Soc. 356(7), 2739–2756 (electronic) (2004).  https://doi.org/10.1090/S0002-9947-03-03340-3
  26. 26.
    Peletier, M.A., Savaré, G., Veneroni, M.: Chemical reactions as \(\Gamma \)-limit of diffusion [revised reprint of mr2679596]. SIAM Rev. 54(2), 327–352 (2012).  https://doi.org/10.1137/110858781 MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Perona, P., Malik, J.: Scale-space and edge-detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990).  https://doi.org/10.1109/34.56205 CrossRefGoogle Scholar
  28. 28.
    Pierre, M.: Uniform convergence for a finite-element discretization of a viscous diffusion equation. IMA J. Numer. Anal. 30(2), 487–511 (2010).  https://doi.org/10.1093/imanum/drn055 MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Plotnikov, P.I.: Passing to the limit with respect to viscosity in an equation with variable parabolicity direction. Differ. Equ. 30(4), 614–622 (1994)MATHGoogle Scholar
  30. 30.
    Serfaty, S.: Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete Contin. Dyn. Syst. 31(4), 1427–1451 (2011).  https://doi.org/10.3934/dcds.2011.31.1427 MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Smarrazzo, F., Tesei, A.: Long-time behavior of solutions to a class of forward-backward parabolic equations. SIAM J. Math. Anal. 42(3), 1046–1093 (2010).  https://doi.org/10.1137/090763561 MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Smarrazzo, F., Tesei, A.: Some recent results concerning a class of forward–backward parabolic equations. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 22(2), 175–188 (2011).  https://doi.org/10.4171/RLM/594
  33. 33.
    Terracina, A.: Non-uniqueness results for entropy two-phase solutions of forward-backward parabolic problems with unstable phase. J. Math. Anal. Appl. 413(2), 963–975 (2014).  https://doi.org/10.1016/j.jmaa.2013.12.045 MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Terracina, A.: Two-phase entropy solutions of forward-backward parabolic problems with unstable phase. Interfaces Free Bound. 17(3), 289–315 (2015).  https://doi.org/10.4171/IFB/343 MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Visintin, A.: Quasilinear parabolic P.D.E.s with discontinuous hysteresis. Ann. Mat. Pura Appl. 185(4), 487–519 (2006).  https://doi.org/10.1007/s10231-005-0164-6 MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Yin, J., Wang, C.: Young measure solutions of a class of forward-backward diffusion equations. J. Math. Anal. Appl. 279(2), 659–683 (2003).  https://doi.org/10.1016/S0022-247X(03)00054-4 MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Zhang, K.: On existence of weak solutions for one-dimensional forward-backward diffusion equations. J. Differ. Equ. 220(2), 322–353 (2006).  https://doi.org/10.1016/j.jde.2005.01.011 ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Angewandte MathematikUniversität BonnBonnGermany
  2. 2.Institute der MathematikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations