Advertisement

On the Motion of a Body with a Cavity Filled with Compressible Fluid

  • Giovanni Paolo Galdi
  • Václav Mácha
  • Šárka Nečasová
Article
  • 38 Downloads

Abstract

We study the motion of the system, \({\mathcal S}\), constituted by a rigid body, \({\mathcal{B}}\), containing in its interior a viscous compressible fluid, and moving in absence of external forces. Our main objective is to characterize the long time behavior of the coupled system body-fluid. Under suitable assumptions on the “mass distribution” of \({\mathcal{S}}\), and for a sufficiently “small” Mach number and initial data, we show that every corresponding motion (in a suitable regularity class) must tend to a steady state where the fluid is at rest with respect to \({\mathscr{B}}\). Moreover, \({\mathcal{S}}\), as a whole, performs a uniform rotation around an axis parallel to the (constant) angular momentum of \({\mathcal{S}}\), and passing through its center of mass.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Part of this work was carried out when G.P. Galdi was tenured with the Eduard Čech Distinguished Professorship at the Mathematical Institute of the Czech Academy of Sciences in Prague. His work is also partially supported by NSF Grant DMS- 1614011, and the Mathematical Institute of the Czech Academy of Sciences (RVO67985840). The research of V. Mácha is supported by GAČR Project P201-16-032308 and RVO 67985840, and that of Š.Nečasová by GAČR Project P201-16-032308 and RVO67985840.

Rferences

  1. 1.
    Beirão da Veiga, H.: An L p-for the n-dimensional, stationary, compressible Navier–Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions. Commun. Math. Phys. 109(2), 229–248 1987Google Scholar
  2. 2.
    Chernousko, F.L.: Motion of a rigid body with cavities containing a viscous fluid (1968). NASA Technical Translations, Moscow, 1972Google Scholar
  3. 3.
    Chernousko, F.L., Akulenko, L.D., Leshchenko, D.D.: Evolution of Motions of a Rigid Body About its Center of Mass. Springer, Berlin (2017)CrossRefzbMATHGoogle Scholar
  4. 4.
    Disser, K., Galdi, G.P., Mazzone, G., Zunino, P.: Inertial Motions of a Rigid Body with a cavity filled with a viscous liquid. Arch. Ration. Mech. Anal. 221(1), 487–526 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Erban, R.: On the static-limit solutions to the Navier- equations of compressible flow. J. Math. Fluid Mech. 3(4), 393–408 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Evans, L.C.: Partial Differential Equations AMS 1997Google Scholar
  7. 7.
    Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2004)zbMATHGoogle Scholar
  8. 8.
    Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Birkhäuser, Basel (2009)CrossRefzbMATHGoogle Scholar
  9. 9.
    Feireisl, E., Petzeltová, H.: Large-time Behaviour of Solutions to the Navier-Stokes Equations of Compressible low. Arch. Ration. Mech. Anal. 150, 77–96 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Feireisl, E., Petzeltová, H.: On the zero-velocity-limit solutions to the Navier-Stokes equations of compressible flow. Manuscripta Math. 97(1), 109–116 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Friendlander, S., Lyashenko, A.: Nonlinear instability of a precessing body with a cavity filled by an ideal fluid. SIAM J. Math. Anal. 29, 600–618 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Galdi, G.: On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications, Handbook of Mathematical Fluid Dynamics, Vol. 1, 653–791. (Eds. by Friedlander, S. and Serre D.) Elsevier, New York 2002Google Scholar
  13. 13.
    Galdi, G.P.: Stability of permanent rotations and long-time behavior of inertial motions of a rigid body with an interior liquid-filled cavity. Particles in flows, 217–253, Adv. Math. Fluid Mech., Birkhäuser/Springer, Cham, 2017Google Scholar
  14. 14.
    Galdi, G.P., Mazzone, G., Zunino, P.: Inertial motions of a rigid body with a cavity filled with a viscous liquid. Comptes Rendus Mécanique 341, 760–765 (2013)CrossRefzbMATHGoogle Scholar
  15. 15.
    Galdi, G.P., Mazzone, G., Mohebbi, M.: On the motion of a liquid-filled rigid body subject to a time-periodic torque, Recent developments of mathematical fluid mechanics, pp. 233–255. Adv. Math. Fluid Mech, Birkhäuser/Springer, Basel (2016)zbMATHGoogle Scholar
  16. 16.
    Galdi, G.P., Mazzone, G.: On the motion of a pendulum with a cavity entirely filled with a viscous liquid, Recent progress in the theory of the Euler and Navier–Stokes equations, London Math. Soc. Lecture Note Ser., Vol. 430, Cambridge University Press, Cambridge, pp. 37–56 2016Google Scholar
  17. 17.
    Galdi, G.P., Mazzone, G.: Stability and long–time behavior of a pendulum with an interior cavity filled with a viscous liquid. Proceedings of the Workshop ``Mathematical Analysis of Viscous Incompressible Fluid'', November 14–16, Kyoto, RIMS Kokyuroku, in print 2016Google Scholar
  18. 18.
    Galdi, G.P., Mazzone, G., Mohebbi, M.: On the motion of a liquid-filled heavy body around a fixed point. Q. Appl. Math. 76(1), 113–145 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hale, J.K.: Dynamical Systems and Stability. J. Math. Anal. Appl. 26, 39–59 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hoff, D.: Global existence for 1D, compressible, isentropic Navier-Stokes equations with large nitial data. Trans. Am. Math. Soc. 303(1), 169–181 (1987)zbMATHGoogle Scholar
  21. 21.
    Hoff, D., Santos, M.M.: Lagrangean Structure and Propagation of Singularities in Multidimensional Compressible Flow. Arch. Rational Mech. Anal. 188, 509–543 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kračmar, S., Nečasová, Š., Novotný, A.: The motion of a compressible viscous fluid around rotating body. Ann. Univ. Ferrara Sez. VII Sci. Mat. 60(1), 189–208 2014Google Scholar
  23. 23.
    Kopachevsky, N.D., Krein, S.G., Ngo, Z.C.: Operator methods in hydrodynamics: evolution and spectral problems. Nauka, in Russian, Moscow (1989)Google Scholar
  24. 24.
    Lyashenko, A.A.: Instability criterion for a rotating body with a cavity with an ideal fluid inside. Stab. Appl. Anal. Cont. Media 2, 501–528 (1992)Google Scholar
  25. 25.
    Lyashenko, A.A.: On the instability criterion for a rotating body with a cavity filled with viscous liquid. Jpn. J. Ind. Appl. Math. 10, 451–469 (1993)CrossRefzbMATHGoogle Scholar
  26. 26.
    Lions, P.-L.: Mathematical topics in fluid dynamics, Vol.2, Compressible modelsGoogle Scholar
  27. 27.
    Mácha, V., Nečasová, Š.: Self-propelled motion in a viscous compressible fluid–unbounded domains. Math. Models Methods Appl. Sci. 26(4), 627–643 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Mácha, V., Nečasová, Š.: Self-propelled motion in a viscous compressible fluid. Proc. R. Soc. Edinburgh Sect. A 146(2), 415–433 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Matsumura, A., Nishida, T.: The initial boundary value problem for the equations of motion of compressible viscous and heat-conductive Fluid. Commun. Math. Phys. 89(4), 445–464 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Mazzone, G., Prüss, J., Simonett, G.: A maximal regularity approach to the study of motion of a rigid body with a fluid-filled cavity, 2018, arXiv:1804.05403
  32. 32.
    Moiseyev, N.N., Rumyantsev, V.V.: Dynamic Stability of Bodies Containing Fluid. Springer, New York (1968)CrossRefzbMATHGoogle Scholar
  33. 33.
    Nečasová, Š., Takahashi, T., Tucsnak, M.: Weak solutions for the motion of a self-propelled deformable structure in a viscous incompressible fluid. Acta Appl Math 116 (2011), no 3, 329–352 Oxford Science Publication, Oxford, 1998Google Scholar
  34. 34.
    Novotný, A., Straškraba, I.: Introduction to the Mathematical Theory of Compressible Flow Oxford University Press, Oxford 2004Google Scholar
  35. 35.
    Poincare, H.: Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation. Acta Math. 7, 259–380 (1885)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Roubíček, T.: Nonlinear Partial Differential Equations with Applications Birkhäuser, 2005Google Scholar
  37. 37.
    Scheck, F.: Mechanics. From Newton's Laws to Deterministic Chaos, Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  38. 38.
    Silvestre, A.L., Takahashi, T.: On the Motion of Rigid Body with a Cavity Filled with a Viscous Liquid. Proceedings of the Royal Society of Edinburgh, 142 A, 391–423, 2013Google Scholar
  39. 39.
    Sobolev, V.V.: On a new problem of mathematical physics. (Russian). Izv. Akad. Nauk SSSR. Ser. Mat. 18, 3–50 1954Google Scholar
  40. 40.
    Stokes, G.G.: Mathematical and physical papers. Volume 1, Cambridge Library Collection, Cambridge University Press, Cambridge, 2009. Reprint of the 1880 originalGoogle Scholar
  41. 41.
    Valli, A.: Periodic and stationary solutions for compressible Navier–Stokes equations via a stability method. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4 e série, tome 10, n 4, 607–647 1983Google Scholar
  42. 42.
    Zhoukovski, N.Y.: On the motion of a rigid body having cavities filled with a homogeneous liquid drop. Russ. J. Phys. Chem. Soc. 17, 31–152 (1885)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Giovanni Paolo Galdi
    • 1
  • Václav Mácha
    • 2
  • Šárka Nečasová
    • 2
  1. 1.Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPittsburghUSA
  2. 2.Institute of MathematicsCzech Academy of SciencesPragueCzech Republic

Personalised recommendations