Advertisement

Weighted Ultrafast Diffusion Equations: From Well-Posedness to Long-Time Behaviour

  • Mikaela IacobelliEmail author
  • Francesco S. Patacchini
  • Filippo Santambrogio
Open Access
Article
  • 43 Downloads

Abstract

In this paper we devote our attention to a class of weighted ultrafast diffusion equations arising from the problem of quantisation for probability measures. These equations have a natural gradient flow structure in the space of probability measures endowed with the quadratic Wasserstein distance. Exploiting this structure, in particular through the so-called JKO scheme, we introduce a notion of weak solutions, prove existence, uniqueness, BV and H1 estimates, L1 weighted contractivity, Harnack inequalities, and exponential convergence to a steady state.

Notes

Acknowledgements

MI thanks Matteo Bonforte for his comments to a preliminary version of this manuscript and José A. Carrillo for interesting discussions on this topic during a visit at Imperial College in 2015. FSP thanks the CNA at Carnegie Mellon University for their kind support. FS thanks Imperial College for their warm hospitality in 2017 when this work started, via a CNRS-Imperial fellowship.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser Verlag, Basel (2008)Google Scholar
  2. 2.
    Aubin, J.-P.: Un théorème de compacité. C. R. Acad. Sci. Paris 256(24), 5042–5044 (1963)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bénilan, P., Crandall, M.G.: The continuous dependence on \(\phi \) of solutions of \(u_t-\Delta \phi (u)=0\). Indiana Univ. Math. J. 30(2), 161–177 (1981)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Berryman, J.G., Holland, J.C.: Asymptotic behaviour of the nonlinear differential equation \(n_t=(n^{-1}n_x)_x\). J. Math. Phys. 23(6), 983–987 (1982)ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    Billinglsey, P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics, 2nd edn. Wiley, New York (1999)Google Scholar
  6. 6.
    Bonforte, M., Grillo, G., Vázquez, J.L.: Fast diffusion flow on manifolds of nonpositive curvature. J. Evol. Equ. 8(1), 99–128 (2008)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bonforte, M., Grillo, G., Vázquez, J.L.: Behaviour near extinction for the fast diffusion equation on bounded domains. J. Math. Pures Appl. (9) 97(1), 1–38 (2012)Google Scholar
  8. 8.
    Bonforte, M., Vázquez, J.L.: Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations. Adv. Math. 223(2), 529–578 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bonforte, M., Vázquez, J.L.: A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Arch. Ration. Mech. Anal. 218(1), 317–362 (2015)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bonforte, M., Vázquez, J.L.: Fractional nonlinear degenerate diffusion equations on bounded domains part I. Existence, uniqueness and upper bounds. Nonlinear Anal. TMA 131, 363–398 (2016)Google Scholar
  11. 11.
    Bouchitté, G., Jimenez, C., Rajesh, M.: Asymptotique d'un problème de positionnement optimal. C. R. Math. Acad. Sci. Paris 335(10), 853–858 (2002)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bourne, D.P., Roper, S.M.: Centroidal power diagrams, Lloyd's algorithm and applications to optimal location problems. SIAM J. Numer. Anal. 53(6), 2545–2569 (2015)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Caffarelli, L.: A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity. Ann. of Math. 131(1), 129–134 (1990)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Caffarelli, L.: Interior \(W^{2, p}\) estimates for solutions of the Monge-Ampère equation. Ann. Math. 131(1), 135–150 (1990)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Caffarelli, L.: Some regularity properties of solutions of Monge-Ampère equation. Commun. Pure Appl. Math. 44(8–9), 965–969 (1991)zbMATHGoogle Scholar
  16. 16.
    Caglioti, E., Golse, F., Iacobelli, M.: A gradient flow approach to quantisation of measures. Math. Models Methods Appl. Sci. 25(10), 1845–1885 (2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Caglioti, E., Golse, F., Iacobelli, M.: Quantization of measures and gradient flows: a perturbative approach in the 2-dimensional case. Ann. Inst. H. Poincaré Anal. Non Linéaire 35(6), 1531–1555 (2018) Google Scholar
  18. 18.
    Chayes, J.T., Osher, S., Ralston, J.: On singular diffusion equations with applications to self-organized criticality. Commun. Pure Appl. Math. 46(10), 1363–1377 (1993)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Cordero-Erausquin, D.: Sur le transport de mesures périodiques. C. R. Math. Acad. Sci. Paris 329(3), 199–202 (1999)ADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser Verlag, Basel (1992)Google Scholar
  21. 21.
    Daskalopoulos, P., Del Pino, M.: On nonlinear parabolic equations of very fast diffusion. Arch. Ration. Mech. Anal. 137(4), 363–380 (1997)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Daskalopoulos, P., Kenig, C.E.: Degenerate Diffusions. Initial Value Problems and Local Regularity Theory. Tracts in Mathematics, European Mathematical Society, Zürich (2007)Google Scholar
  23. 23.
    De Gennes, P.G.: Wetting: statics and dynamics. Rev. Mod. Phys. 57(3), 827–863 (1985)ADSGoogle Scholar
  24. 24.
    De Philippis, G., Mészáros, A.R., Santambrogio, F., Velichkov, B.: \(BV\) estimates in optimal transportation and applications. Arch. Ration. Mech. Anal. 219(2), 829–860 (2016)MathSciNetzbMATHGoogle Scholar
  25. 25.
    De Philippis, G., Figalli, A.: The Monge-Ampère equation and its link to optimal transportation. Bull. Am. Math. Soc. 51(4), 527–580 (2014)zbMATHGoogle Scholar
  26. 26.
    Di Francesco, M., Matthes, D.: Curves of steepest descent are entropy solutions for a class of degenerate convection-diffusion equations Calc. Var. Partial Differ. Equ. 50(1–2), 199–230 (2014)zbMATHGoogle Scholar
  27. 27.
    Di Marino, S., Maury, B., Santambrogio, F.: Measure sweeping processes. J. Convex Anal. 23(2), 567–601 (2016)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Revised edn. Textbooks in Mathematics. CRC Press, Boca Raton (2015)zbMATHGoogle Scholar
  29. 29.
    Esteban, J.R., Rodríguez, A., Vázquez, J.L.: A nonlinear heat equation with singular diffusivity. Commun. Partial Differ. Equ. 13(8), 985–1039 (1988)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Fejes Tóth, L.: Lagerungen in der Ebene auf der Kugel und im Raum. Grundlehren der mathematischen Wissenschaften. Springer Verlag, Berlin (1953)zbMATHGoogle Scholar
  31. 31.
    Figalli, A.: The Monge-Ampère equation and its applications. Zürich Lectures in Advanced Mathematics. European Mathematical Society, Zürich (2017)zbMATHGoogle Scholar
  32. 32.
    Galaktionov, V.A., Peletier, L.A., Vázquez, J.L.: Asymptotics of the fast-diffusion equation with critical exponent. SIAM J. Math. Anal. 31(5), 1157–1174 (2000)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Graf, S., Luschgy, H.: Foundations of Quantization for Probability Distributions. Lecture Notes in Mathematics. Springer Verlag, Berlin (2000)zbMATHGoogle Scholar
  34. 34.
    Herrero, M.A., Pierre, M.: The Cauchy problem for \(u_t=\Delta u^m\) when \(0<m< 1\). Trans. Am. Math. Soc. 291, 145–158 (1985)zbMATHGoogle Scholar
  35. 35.
    Iacobelli, M.: Asymptotic quantisation for probability measures on Riemannian manifolds. ESAIM Control Optim. Calc. Var. 22(3), 770–785 (2016)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Iacobelli, M.: Asymptotic analysis for a very fast diffusion equation arising from the 1D quantisation problem. Discrete Contin. Dyn. Syst. (to appear)Google Scholar
  37. 37.
    Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Kloeckner, B.: Approximation by finitely supported measures. ESAIM Control Optim. Calc. Var. 18(2), 343–359 (2012)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Lavenant, H., Santambrogio, F.: Optimal density evolution with congestion: \(L^\infty \) bounds via flow interchange techniques and applications to variational mean field games. Commun. Partial Differ. Equ. (to appear)Google Scholar
  40. 40.
    Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Matthes, D., McCann, R.J., Savaré, G.: A family of nonlinear fourth order equations of gradient flow type. Comm. Partial Differential Equations 34(11), 1352–1397 (2009)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Mérigot, Q.: A multiscale approach to optimal transport. Comput. Graph. Forum 30(5), 1583–1592 (2011)Google Scholar
  43. 43.
    McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–159 (1997)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Morgan, F., Bolton, R.: Hexagonal economic regions solve the location problem. Am. Math. Mon. 109(2), 165–172 (2002)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Mosconi, S., Tilli, P.: \(\Gamma \)-convergence for the irrigation problem. J. Conv. Anal. 12(1), 145–158 (2005)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Moser, J.: A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13(3), 457–468 (1980)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Santambrogio, F.: Optimal Transport for Applied Mathematicians. Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Basel (2015)zbMATHGoogle Scholar
  49. 49.
    Santambrogio, F.: Euclidean, metric, and Wasserstein gradient flows: an overview. Bull. Math. Sci. 7(1), 87–154 (2017)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Vázquez, J.L.: Nonexistence of solutions for nonlinear heat equations of fast-diffusion type. J. Math. Pures. Appl. 71(6), 503–526 (1992)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Vázquez, J.L.: Failure of the strong maximum principle in nonlinear diffusion. Existence of needles. Commun. Partial Differ. Equ. 30(9), 1263–1303 (2005)Google Scholar
  52. 52.
    Vázquez, J.L.: Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Mathematics and Its Applications. Oxford University Press, New York (2006)zbMATHGoogle Scholar
  53. 53.
    Vázquez, J.L.: The Porous Medium Equation. Mathematical Theory. Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2007)zbMATHGoogle Scholar
  54. 54.
    Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics. American Mathematical Society, Providence (2003)zbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

OpenAccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Mikaela Iacobelli
    • 1
    Email author
  • Francesco S. Patacchini
    • 2
  • Filippo Santambrogio
    • 3
  1. 1.Department of Mathematical SciencesDurham UniversityDurhamUK
  2. 2.Deparment of Mathematical SciencesCarnegie Mellon UniversityPittsburghUSA
  3. 3.Laboratoire de Mathématiques d’OrsayUniv. Paris-Sud, CNRS, Université Paris-SaclayOrsayFrance

Personalised recommendations