Advertisement

Archives of Toxicology

, Volume 93, Issue 12, pp 3641–3642 | Cite as

Acetaminophen induces programmed necrosis

  • Reham HassanEmail author
Letter to the Editor, News and Views
  • 57 Downloads

Notes

Compliance with ethical standards

Conflict of interest

The author declares that she has no conflict of interest.

References

  1. Du K, Xie Y, McGill MR, Jaeschke H (2015) Pathophysiological significance of c-jun N-terminal kinase in acetaminophen hepatotoxicity. Expert Opin Drug Metab Toxicol 11(11):1769–1779.  https://doi.org/10.1517/17425255.2015.1071353 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ghallab A, Cellière G, Henkel SG et al (2016) Model-guided identification of a therapeutic strategy to reduce hyperammonemia in liver diseases. J Hepatol 64(4):860–871.  https://doi.org/10.1016/j.jhep.2015.11.018 CrossRefPubMedGoogle Scholar
  3. Ghallab A, Hofmann U, Sezgin S et al (2019) Bile microinfarcts in cholestasis are initiated by rupture of the apical hepatocyte membrane and cause shunting of bile to sinusoidal blood. Hepatology 69(2):666–683CrossRefGoogle Scholar
  4. Godoy P, Hewitt NJ, Albrecht U et al (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87(8):1315–1530CrossRefGoogle Scholar
  5. Hammad S, Hoehme S, Friebel A et al (2014) Protocols for staining of bile canalicular and sinusoidal networks of human, mouse and pig livers, three-dimensional reconstruction and quantification of tissue microarchitecture by image processing and analysis. Arch Toxicol 88(5):1161–1183CrossRefGoogle Scholar
  6. Han D, Dara L, Win S et al (2013) Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria. Trends Pharmacol Sci 34(4):243–253.  https://doi.org/10.1016/j.tips.2013.01.009(Epub 2013 Feb 28) CrossRefPubMedPubMedCentralGoogle Scholar
  7. Hoehme S, Brulport M, Bauer A et al (2010) Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proc Natl Acad Sci USA 107(23):10371–10376CrossRefGoogle Scholar
  8. Jaeschke H, Ramachandran A, Chao X, Ding WX (2019) Emerging and established modes of cell death during acetaminophen-induced liver injury. Arch Toxicol.  https://doi.org/10.1007/s00204-019-02597-1 CrossRefPubMedGoogle Scholar
  9. Jansen PL, Ghallab A, Vartak N et al (2017) The ascending pathophysiology of cholestatic liver disease. Hepatology 65(2):722–738CrossRefGoogle Scholar
  10. Jorgensen I, Rayamajhi M, Miao EA (2017) Programmed cell death as a defence against infection. Nat Rev Immunol 17(3):151–164.  https://doi.org/10.1038/nri.2016.147 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Lei P, Bai T, Sun Y (2019) Mechanisms of ferroptosis and relations with regulated cell death: a review. Front Physiol 26(10):139.  https://doi.org/10.3389/fphys.2019.00139 CrossRefGoogle Scholar
  12. Leist M, Ghallab A, Graepel R et al (2017) Adverse outcome pathways: opportunities, limitations and open questions. Arch Toxicol 91(11):3477–3505.  https://doi.org/10.1007/s00204-017-2045-3 CrossRefPubMedGoogle Scholar
  13. Ramachandran A, Jaeschke H (2019) Acetaminophen hepatotoxicity. Semin Liver Dis 39(2):221–234.  https://doi.org/10.1055/s-0039-1679919 CrossRefPubMedGoogle Scholar
  14. Schenk A, Ghallab A, Hofmann U et al (2017) Physiologically-based modelling in mice suggests an aggravated loss of clearance capacity after toxic liver damage. Sci Rep 7(1):6224CrossRefGoogle Scholar
  15. Schliess F, Hoehme S, Henkel SG et al (2014) Integrated metabolic spatial-temporal model for the prediction of ammonia detoxification during liver damage and regeneration. Hepatology 60(6):2040–2051.  https://doi.org/10.1002/hep.27136 CrossRefPubMedGoogle Scholar
  16. Sezgin S, Hassan R, Zühlke S et al (2018) Spatio-temporal visualization of the distribution of acetaminophen as well as its metabolites and adducts in mouse livers by MALDI MSI. Arch Toxicol 92(9):2963–2977CrossRefGoogle Scholar
  17. Sharma M, Gadang V, Jaeschke A (2012) Critical role for mixed-lineage kinase 3 in acetaminophen-induced hepatotoxicity. Mol Pharmacol 82(5):1001–1007.  https://doi.org/10.1124/mol.112.079863 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Shinohara M, Ybanez MD, Win S et al (2010) Silencing glycogen synthase kinase-3beta inhibits acetaminophen hepatotoxicity and attenuates JNK activation and loss of glutamate cysteine ligase and myeloid cell leukemia sequence 1. J Biol Chem 285(11):8244–8255.  https://doi.org/10.1074/jbc.m109.054999 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Tang D, Kang R, Berghe TV et al (2019) The molecular machinery of regulated cell death. Cell Res 29(5):347–364.  https://doi.org/10.1038/s41422-019-0164-5 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Yuan J, Najafov A, Py BF (2016) Roles of caspases in necrotic cell death. Cell 167(7):1693–1704.  https://doi.org/10.1016/j.cell.2016.11.047 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Zhang J, Min RWM, Le K et al (2017) The role of MAP2 kinases and p38 kinase in acute murine liver injury models. Cell Death Dis 8(6):e2903.  https://doi.org/10.1038/cddis.2017.295 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Forensic Medicine and Toxicology Department, Faculty of Veterinary MedicineSouth Valley UniversityQenaEgypt

Personalised recommendations