Archives of Toxicology

, Volume 93, Issue 12, pp 3641–3642 | Cite as

Acetaminophen induces programmed necrosis

  • Reham HassanEmail author
Letter to the Editor, News and Views


Compliance with ethical standards

Conflict of interest

The author declares that she has no conflict of interest.


  1. Du K, Xie Y, McGill MR, Jaeschke H (2015) Pathophysiological significance of c-jun N-terminal kinase in acetaminophen hepatotoxicity. Expert Opin Drug Metab Toxicol 11(11):1769–1779. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ghallab A, Cellière G, Henkel SG et al (2016) Model-guided identification of a therapeutic strategy to reduce hyperammonemia in liver diseases. J Hepatol 64(4):860–871. CrossRefPubMedGoogle Scholar
  3. Ghallab A, Hofmann U, Sezgin S et al (2019) Bile microinfarcts in cholestasis are initiated by rupture of the apical hepatocyte membrane and cause shunting of bile to sinusoidal blood. Hepatology 69(2):666–683CrossRefGoogle Scholar
  4. Godoy P, Hewitt NJ, Albrecht U et al (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87(8):1315–1530CrossRefGoogle Scholar
  5. Hammad S, Hoehme S, Friebel A et al (2014) Protocols for staining of bile canalicular and sinusoidal networks of human, mouse and pig livers, three-dimensional reconstruction and quantification of tissue microarchitecture by image processing and analysis. Arch Toxicol 88(5):1161–1183CrossRefGoogle Scholar
  6. Han D, Dara L, Win S et al (2013) Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria. Trends Pharmacol Sci 34(4):243–253. 2013 Feb 28) CrossRefPubMedPubMedCentralGoogle Scholar
  7. Hoehme S, Brulport M, Bauer A et al (2010) Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proc Natl Acad Sci USA 107(23):10371–10376CrossRefGoogle Scholar
  8. Jaeschke H, Ramachandran A, Chao X, Ding WX (2019) Emerging and established modes of cell death during acetaminophen-induced liver injury. Arch Toxicol. CrossRefPubMedGoogle Scholar
  9. Jansen PL, Ghallab A, Vartak N et al (2017) The ascending pathophysiology of cholestatic liver disease. Hepatology 65(2):722–738CrossRefGoogle Scholar
  10. Jorgensen I, Rayamajhi M, Miao EA (2017) Programmed cell death as a defence against infection. Nat Rev Immunol 17(3):151–164. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Lei P, Bai T, Sun Y (2019) Mechanisms of ferroptosis and relations with regulated cell death: a review. Front Physiol 26(10):139. CrossRefGoogle Scholar
  12. Leist M, Ghallab A, Graepel R et al (2017) Adverse outcome pathways: opportunities, limitations and open questions. Arch Toxicol 91(11):3477–3505. CrossRefPubMedGoogle Scholar
  13. Ramachandran A, Jaeschke H (2019) Acetaminophen hepatotoxicity. Semin Liver Dis 39(2):221–234. CrossRefPubMedGoogle Scholar
  14. Schenk A, Ghallab A, Hofmann U et al (2017) Physiologically-based modelling in mice suggests an aggravated loss of clearance capacity after toxic liver damage. Sci Rep 7(1):6224CrossRefGoogle Scholar
  15. Schliess F, Hoehme S, Henkel SG et al (2014) Integrated metabolic spatial-temporal model for the prediction of ammonia detoxification during liver damage and regeneration. Hepatology 60(6):2040–2051. CrossRefPubMedGoogle Scholar
  16. Sezgin S, Hassan R, Zühlke S et al (2018) Spatio-temporal visualization of the distribution of acetaminophen as well as its metabolites and adducts in mouse livers by MALDI MSI. Arch Toxicol 92(9):2963–2977CrossRefGoogle Scholar
  17. Sharma M, Gadang V, Jaeschke A (2012) Critical role for mixed-lineage kinase 3 in acetaminophen-induced hepatotoxicity. Mol Pharmacol 82(5):1001–1007. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Shinohara M, Ybanez MD, Win S et al (2010) Silencing glycogen synthase kinase-3beta inhibits acetaminophen hepatotoxicity and attenuates JNK activation and loss of glutamate cysteine ligase and myeloid cell leukemia sequence 1. J Biol Chem 285(11):8244–8255. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Tang D, Kang R, Berghe TV et al (2019) The molecular machinery of regulated cell death. Cell Res 29(5):347–364. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Yuan J, Najafov A, Py BF (2016) Roles of caspases in necrotic cell death. Cell 167(7):1693–1704. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Zhang J, Min RWM, Le K et al (2017) The role of MAP2 kinases and p38 kinase in acute murine liver injury models. Cell Death Dis 8(6):e2903. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Forensic Medicine and Toxicology Department, Faculty of Veterinary MedicineSouth Valley UniversityQenaEgypt

Personalised recommendations