Development of a neural rosette formation assay (RoFA) to identify neurodevelopmental toxicants and to characterize their transcriptome disturbances

  • Nadine Dreser
  • Katrin Madjar
  • Anna-Katharina Holzer
  • Marion Kapitza
  • Christopher Scholz
  • Petra Kranaster
  • Simon Gutbier
  • Stefanie Klima
  • David Kolb
  • Christian Dietz
  • Timo Trefzer
  • Johannes Meisig
  • Christoph van Thriel
  • Margit Henry
  • Michael R. Berthold
  • Nils Blüthgen
  • Agapios Sachinidis
  • Jörg Rahnenführer
  • Jan G. Hengstler
  • Tanja Waldmann
  • Marcel LeistEmail author
In vitro systems


The first in vitro tests for developmental toxicity made use of rodent cells. Newer teratology tests, e.g. developed during the ESNATS project, use human cells and measure mechanistic endpoints (such as transcriptome changes). However, the toxicological implications of mechanistic parameters are hard to judge, without functional/morphological endpoints. To address this issue, we developed a new version of the human stem cell-based test STOP-tox(UKN). For this purpose, the capacity of the cells to self-organize to neural rosettes was assessed as functional endpoint: pluripotent stem cells were allowed to differentiate into neuroepithelial cells for 6 days in the presence or absence of toxicants. Then, both transcriptome changes were measured (standard STOP-tox(UKN)) and cells were allowed to form rosettes. After optimization of staining methods, an imaging algorithm for rosette quantification was implemented and used for an automated rosette formation assay (RoFA). Neural tube toxicants (like valproic acid), which are known to disturb human development at stages when rosette-forming cells are present, were used as positive controls. Established toxicants led to distinctly different tissue organization and differentiation stages. RoFA outcome and transcript changes largely correlated concerning (1) the concentration-dependence, (2) the time dependence, and (3) the set of positive hits identified amongst 24 potential toxicants. Using such comparative data, a prediction model for the RoFA was developed. The comparative analysis was also used to identify gene dysregulations that are particularly predictive for disturbed rosette formation. This ‘RoFA predictor gene set’ may be used for a simplified and less costly setup of the STOP-tox(UKN) assay.


Neural rosettes Cytotoxicity Developmental toxicity Human stem cells Differentiation Neural precursor cells Phenotypic anchoring Gene expression 



Adverse outcome pathway


Benchmark concentration leading to 25% decrease compared to control


Bisphenol A


Borderline range


Central nervous system


Cyclosporin A




Developmental neurotoxicity


Fibroblast growth factor


Histone deacetylase inhibitor


Interferon beta


Key events


Key neurodevelopmental processes


Mouse embryonic stem cell test


New approach methods


Neural cell adhesion molecule


Neurodevelopmental distance


Neuroepithelial precursor


Organization for economic co-operation and development


P-chloromercuribenzoic acid


Phorbol 12-myristate 13-acetate


Pluripotent stem cells


Retinoic acid


Registration, evaluation, authorisation and restriction of chemicals (EC 1907/2006)


Rosette formation assay


Standard deviation


Stem cell-based teratogenic omics prediction-UKN toxicity assay (Shinde et al. 2016a), previously named:


University of Konstanz (1) assay (Krug et al. 2013b)




Trichostatin A


Uncertainty of threshold


Valproic acid


Wnt activators



This work was supported by the Land BW, the Doerenkamp-Zbinden foundation, the DFG (RTG1331, KoRS-CB) and the Projects from the European Union's Horizon 2020 research and innovation programme EU-ToxRisk (Grant agreement No 681002) and ENDpoiNTs (Grant agreement No 825759). We are grateful to H. Leisner and D. Fischer and the staff of the bioimaging center (BIC) for invaluable experimental support.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

204_2019_2612_MOESM1_ESM.pdf (1.3 mb)
Supplementary file1 (PDF 1291 kb)


  1. Aschner M, Ceccatelli S, Daneshian M, Fritsche E, Hasiwa N, Hartung T, Hogberg HT, Leist M, Li A, Mundi WR et al (2017) Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use. Altex 34:49–74PubMedPubMedCentralGoogle Scholar
  2. Baker N, Boobis A, Burgoon L, Carney E, Currie R, Fritsche E, Knudsen T, Laffont M, Piersma AH, Poole A et al (2018) Building a developmental toxicity ontology. Birth Defects Res 110:502–518PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bal-Price A, Fritsche E (2018) Editorial: developmental neurotoxicity. Toxicol Appl Pharmacol 354:1–2PubMedCrossRefGoogle Scholar
  4. Bal-Price A, Crofton KM, Leist M, Allen S, Arand M, Buetler T, Delrue N, FitzGerald RE, Hartung T, Heinonen T et al (2015) International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes. Arch Toxicol 89:269–287PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bal-Price A, Hogberg HT, Crofton KM, Daneshian M, FitzGerald RE, Fritsche E, Heinonen T, Hougaard Bennekou S, Klima S, Piersma AH et al (2018a) Recommendation on test readiness criteria for new approach methods in toxicology: exemplified for developmental neurotoxicity. Altex 35:306–352PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bal-Price A, Pistollato F, Sachana M, Bopp SK, Munn S, Worth A (2018b) Strategies to improve the regulatory assessment of developmental neurotoxicity (DNT) using in vitro methods. Toxicol Appl Pharmacol 354:7–18PubMedPubMedCentralCrossRefGoogle Scholar
  7. Balmer NV, Weng MK, Zimmer B, Ivanova VN, Chambers SM, Nikolaeva E, Jagtap S, Sachinidis A, Hescheler J, Waldmann T et al (2012) Epigenetic changes and disturbed neural development in a human embryonic stem cell-based model relating to the fetal valproate syndrome. Hum Mol Genet 21:4104–4114PubMedCrossRefGoogle Scholar
  8. Balmer NV, Klima S, Rempel E, Ivanova VN, Kolde R, Weng MK, Meganathan K, Henry M, Sachinidis A, Berthold MR et al (2014) From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol 88:1451–1468PubMedPubMedCentralCrossRefGoogle Scholar
  9. Barenys M, Gassmann K, Baksmeier C, Heinz S, Reverte I, Schmuck M, Temme T, Bendt F, Zschauer TC, Rockel TD et al (2017) Epigallocatechin gallate (EGCG) inhibits adhesion and migration of neural progenitor cells in vitro. Arch Toxicol 91:827–837PubMedCrossRefGoogle Scholar
  10. Baumann J, Barenys M, Gassmann K, Fritsche E (2014) Comparative human and rat "neurosphere assay" for developmental neurotoxicity testing. Curr Protoc Toxicol 59:11–24Google Scholar
  11. Baumann J, Gassmann K, Masjosthusmann S, DeBoer D, Bendt F, Giersiefer S, Fritsche E (2016) Comparative human and rat neurospheres reveal species differences in chemical effects on neurodevelopmental key events. Arch Toxicol 90:1415–1427PubMedCrossRefPubMedCentralGoogle Scholar
  12. Beccari L, Moris N, Girgin M, Turner DA, Baillie-Johnson P, Cossy AC, Lutolf MP, Duboule D, Arias AM (2018) Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature 562:272–276PubMedCrossRefPubMedCentralGoogle Scholar
  13. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300Google Scholar
  14. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Sieb C, Thiel K, Wiswedel B (2007) KNIME: The konstanz information miner. In: Preisach C, Burkhardt H, Schmidt-Thieme L, Decker R (eds) Data analysis, machine learning and applications. Springer, Berlin, pp 319–326Google Scholar
  15. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  16. Campbell CT, Sampathkumar SG, Yarema KJ (2007) Metabolic oligosaccharide engineering: perspectives, applications, and future directions. Mol Biosyst 3:187–194PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chambers SM, Mica Y, Studer L, Tomishima MJ (2011) Converting human pluripotent stem cells to neural tissue and neurons to model neurodegeneration. Methods Mol Biol 793:87–97PubMedCrossRefGoogle Scholar
  19. Colleoni S, Galli C, Gaspar JA, Meganathan K, Jagtap S, Hescheler J, Sachinidis A, Lazzari G (2011) Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci 124:370–377PubMedCrossRefGoogle Scholar
  20. Conti L, Cattaneo E (2010) Neural stem cell systems: physiological players or in vitro entities? Nat Rev Neurosci 11:176–187PubMedCrossRefPubMedCentralGoogle Scholar
  21. Corvi R, Vilardell M, Aubrecht J, Piersma A (2016) Validation of transcriptomics-based in vitro methods. Adv Exp Med Biol 856:243–257PubMedCrossRefPubMedCentralGoogle Scholar
  22. Delp J, Gutbier S, Klima S, Hoelting L, Pinto-Gil K, Hsieh JH, Aichem M, Klein K, Schreiber F, Tice RR et al (2018) A high-throughput approach to identify specific neurotoxicants/developmental toxicants in human neuronal cell function assays. Altex 35:235–253PubMedCrossRefPubMedCentralGoogle Scholar
  23. Dhara SK, Stice SL (2008) Neural differentiation of human embryonic stem cells. J Cell Biochem 105:633–640PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dhara SK, Hasneen K, Machacek DW, Boyd NL, Rao RR, Stice SL (2008) Human neural progenitor cells derived from embryonic stem cells in feeder-free cultures. Differentiation 76:454–464PubMedCrossRefPubMedCentralGoogle Scholar
  25. Dreser N, Zimmer B, Dietz C, Sugis E, Pallocca G, Nyffeler J, Meisig J, Bluthgen N, Berthold MR, Waldmann T et al (2015) Grouping of histone deacetylase inhibitors and other toxicants disturbing neural crest migration by transcriptional profiling. Neurotoxicology 50:56–70PubMedCrossRefPubMedCentralGoogle Scholar
  26. Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L (2008) Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 22:152–165PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95PubMedCrossRefPubMedCentralGoogle Scholar
  28. Fenech M, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mutat Res 147:29–36PubMedCrossRefPubMedCentralGoogle Scholar
  29. Frank CL, Brown JP, Wallace K, Mundy WR, Shafer TJ (2017) From the cover: developmental neurotoxicants disrupt activity in cortical networks on microelectrode arrays: results of screening 86 compounds during neural network formation. Toxicol Sci 160:121–135PubMedCrossRefPubMedCentralGoogle Scholar
  30. Frank CL, Brown JP, Wallace K, Wambaugh JF, Shah I, Shafer TJ (2018) Defining toxicological tipping points in neuronal network development. Toxicol Appl Pharmacol 354:81–93PubMedCrossRefPubMedCentralGoogle Scholar
  31. Fritsche E, Crofton KM, Hernandez AF, Hougaard Bennekou S, Leist M, Bal-Price A, Reaves E, Wilks MF, Terron A, Solecki R et al (2017) OECD/EFSA workshop on developmental neurotoxicity (DNT): The use of non-animal test methods for regulatory purposes. Altex 34:311–315PubMedCrossRefPubMedCentralGoogle Scholar
  32. Fritsche E, Barenys M, Klose J, Masjosthusmann S, Nimtz L, Schmuck M, Wuttke S, Tigges J (2018a) Development of the concept for stem cell-based developmental neurotoxicity evaluation. Toxicol Sci 165:14–20PubMedCrossRefPubMedCentralGoogle Scholar
  33. Fritsche E, Grandjean P, Crofton KM, Aschner M, Goldberg A, Heinonen T, Hessel EVS, Hogberg HT, Bennekou SH, Lein PJ et al (2018b) Consensus statement on the need for innovation, transition and implementation of developmental neurotoxicity (DNT) testing for regulatory purposes. Toxicol Appl Pharmacol 354:3–6PubMedPubMedCentralCrossRefGoogle Scholar
  34. Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368:2167–2178PubMedCrossRefPubMedCentralGoogle Scholar
  35. Grandjean P, Landrigan PJ (2014) Neurodevelopmental toxicity: still more questions than answers–authors' response. Lancet Neurol 13:648–649PubMedCrossRefPubMedCentralGoogle Scholar
  36. Grinberg M, Stober RM, Edlund K, Rempel E, Godoy P, Reif R, Widera A, Madjar K, Schmidt-Heck W, Marchan R et al (2014) Toxicogenomics directory of chemically exposed human hepatocytes. Arch Toxicol 88:2261–2287PubMedCrossRefPubMedCentralGoogle Scholar
  37. Harbron C, Chang KM, South MC (2007) RefPlus: an R package extending the RMA algorithm. Bioinformatics 23:2493–2494PubMedCrossRefGoogle Scholar
  38. Harrill JA, Freudenrich T, Wallace K, Ball K, Shafer TJ, Mundy WR (2018) Testing for developmental neurotoxicity using a battery of in vitro assays for key cellular events in neurodevelopment. Toxicol Appl Pharmacol 354:24–39PubMedCrossRefPubMedCentralGoogle Scholar
  39. Hartung T, Hoffmann S, Stephens M (2013) Mechanistic validation. Altex 30:119–130PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hermsen SA, Pronk TE, van den Brandhof EJ, van der Ven LT, Piersma AH (2013) Transcriptomic analysis in the developing zebrafish embryo after compound exposure: individual gene expression and pathway regulation. Toxicol Appl Pharmacol 272:161–171PubMedCrossRefPubMedCentralGoogle Scholar
  41. Hoelting L, Klima S, Karreman C, Grinberg M, Meisig J, Henry M, Rotshteyn T, Rahnenfuhrer J, Bluthgen N, Sachinidis A et al (2016) Stem cell-derived immature human dorsal root ganglia neurons to identify peripheral neurotoxicants. Stem Cells Transl Med 5:476–487PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hunt PR, Olejnik N, Bailey KD, Vaught CA, Sprando RL (2018) C. elegans development and activity test detects mammalian developmental neurotoxins. Food Chem Toxicol 121:583–592PubMedCrossRefGoogle Scholar
  43. Jagtap S, Meganathan K, Gaspar J, Wagh V, Winkler J, Hescheler J, Sachinidis A (2011) Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol 162:1743–1756PubMedPubMedCentralCrossRefGoogle Scholar
  44. Johansson H, Lindstedt M, Albrekt AS, Borrebaeck CA (2011) A genomic biomarker signature can predict skin sensitizers using a cell-based in vitro alternative to animal tests. BMC Genom 12:399CrossRefGoogle Scholar
  45. Johansson H, Albrekt AS, Borrebaeck CA, Lindstedt M (2013) The GARD assay for assessment of chemical skin sensitizers. Toxicol In Vitro 27:1163–1169PubMedCrossRefPubMedCentralGoogle Scholar
  46. Krebs A, Nyffeler J, Rahnenfuhrer J, Leist M (2018) Normalization of data for viability and relative cell function curves. Altex 35:268–271PubMedCrossRefPubMedCentralGoogle Scholar
  47. Krug AK, Balmer NV, Matt F, Schonenberger F, Merhof D, Leist M (2013a) Evaluation of a human neurite growth assay as specific screen for developmental neurotoxicants. Arch Toxicol 87:2215–2231PubMedCrossRefPubMedCentralGoogle Scholar
  48. Krug AK, Kolde R, Gaspar JA, Rempel E, Balmer NV, Meganathan K, Vojnits K, Baquie M, Waldmann T, Ensenat-Waser R et al (2013b) Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol 87:123–143PubMedCrossRefGoogle Scholar
  49. Lancaster MA, Corsini NS, Wolfinger S, Gustafson EH, Phillips AW, Burkard TR, Otani T, Livesey FJ, Knoblich JA (2017) Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol 35:659–666PubMedPubMedCentralCrossRefGoogle Scholar
  50. Legler J, van den Brink CE, Brouwer A, Murk AJ, van der Saag PT, Vethaak AD, van der Burg B (1999) Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line. Toxicol Sci 48:55–66PubMedCrossRefPubMedCentralGoogle Scholar
  51. Leist M, Ayrton AD, Ioannides C (1992) A cytosolic oxygenase activity involved in the bioactivation of 2-aminofluorene. Toxicology 71:7–20PubMedCrossRefPubMedCentralGoogle Scholar
  52. Leist M, Hasiwa N, Daneshian M, Hartung T (2012a) Validation and quality control of replacement alternatives—current status and future challenges. Toxicol Res 1:8–22CrossRefGoogle Scholar
  53. Leist M, Lidbury BA, Yang C, Hayden PJ, Kelm JM, Ringeissen S, Detroyer A, Meunier JR, Rathman JF, Jackson GR Jr et al (2012b) Novel technologies and an overall strategy to allow hazard assessment and risk prediction of chemicals, cosmetics, and drugs with animal-free methods. Altex 29:373–388PubMedCrossRefPubMedCentralGoogle Scholar
  54. Leist M, Hasiwa N, Rovida C, Daneshian M, Basketter D, Kimber I, Clewell H, Gocht T, Goldberg A, Busquet F et al (2014) Consensus report on the future of animal-free systemic toxicity testing. Altex 31:341–356PubMedCrossRefPubMedCentralGoogle Scholar
  55. Leist M, Ghallab A, Graepel R, Marchan R, Hassan R, Bennekou SH, Limonciel A, Vinken M, Schildknecht S, Waldmann T et al (2017) Adverse outcome pathways: opportunities, limitations and open questions. Arch Toxicol 91:3477–3505PubMedCrossRefPubMedCentralGoogle Scholar
  56. Leontaridou M, Urbisch D, Kolle SN, Ott K, Mulliner DS, Gabbert S, Landsiedel R (2017) The borderline range of toxicological methods: quantification and implications for evaluating precision. Altex 34:525–538PubMedCrossRefPubMedCentralGoogle Scholar
  57. Leontaridou M, Gabbert S, Landsiedel R (2019) The impact of precision uncertainty on predictive accuracy metrics of non-animal testing methods. Altex 36:435–446PubMedPubMedCentralGoogle Scholar
  58. Li H, Bai J, Zhong G, Lin H, He C, Dai R, Du H, Huang L (2019) Improved defined approaches for predicting skin sensitization hazard and potency in humans. Altex 36:363–372PubMedPubMedCentralGoogle Scholar
  59. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408PubMedPubMedCentralCrossRefGoogle Scholar
  60. London L, Beseler C, Bouchard MF, Bellinger DC, Colosio C, Grandjean P, Harari R, Kootbodien T, Kromhout H, Little F et al (2012) Neurobehavioral and neurodevelopmental effects of pesticide exposures. Neurotoxicology 33:887–896PubMedPubMedCentralCrossRefGoogle Scholar
  61. Mundy WR, Robinette B, Radio NM, Freudenrich TM (2008) Protein biomarkers associated with growth and synaptogenesis in a cell culture model of neuronal development. Toxicology 249:220–229PubMedCrossRefPubMedCentralGoogle Scholar
  62. Murko C, Lagger S, Steiner M, Seiser C, Schoefer C, Pusch O (2013) Histone deacetylase inhibitor Trichostatin A induces neural tube defects and promotes neural crest specification in the chicken neural tube. Differentiation 85:55–66PubMedCrossRefPubMedCentralGoogle Scholar
  63. New DA (1978) Whole-embryo culture and the study of mammalian embryos during organogenesis. Biol Rev Camb Philos Soc 53:81–122PubMedCrossRefPubMedCentralGoogle Scholar
  64. Nyffeler J, Dolde X, Krebs A, Pinto-Gil K, Pastor M, Behl M, Waldmann T, Leist M (2017a) Combination of multiple neural crest migration assays to identify environmental toxicants from a proof-of-concept chemical library. Arch Toxicol 91:3613–3632PubMedCrossRefPubMedCentralGoogle Scholar
  65. Nyffeler J, Karreman C, Leisner H, Kim YJ, Lee G, Waldmann T, Leist M (2017b) Design of a high-throughput human neural crest cell migration assay to indicate potential developmental toxicants. Altex 34:75–94PubMedCrossRefPubMedCentralGoogle Scholar
  66. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66CrossRefGoogle Scholar
  67. Pallocca G, Grinberg M, Henry M, Frickey T, Hengstler JG, Waldmann T, Sachinidis A, Rahnenfuhrer J, Leist M (2016) Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol 90:159–180PubMedCrossRefPubMedCentralGoogle Scholar
  68. Piersma AH, Genschow E, Verhoef A, Spanjersberg MQ, Brown NA, Brady M, Burns A, Clemann N, Seiler A, Spielmann H (2004) Validation of the postimplantation rat whole-embryo culture test in the international ECVAM validation study on three in vitro embryotoxicity tests. Altern Lab Anim 32:275–307PubMedCrossRefPubMedCentralGoogle Scholar
  69. Piersma AH, Bosgra S, van Duursen MB, Hermsen SA, Jonker LR, Kroese ED, van der Linden SC, Man H, Roelofs MJ, Schulpen SH et al (2013) Evaluation of an alternative in vitro test battery for detecting reproductive toxicants. Reprod Toxicol 38:53–64PubMedCrossRefPubMedCentralGoogle Scholar
  70. Radio NM, Breier JM, Shafer TJ, Mundy WR (2008) Assessment of chemical effects on neurite outgrowth in PC12 cells using high content screening. Toxicol Sci 105:106–118PubMedCrossRefPubMedCentralGoogle Scholar
  71. Rempel E, Hoelting L, Waldmann T, Balmer NV, Schildknecht S, Grinberg M, Das Gaspar JA, Shinde V, Stober R, Marchan R et al (2015) A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol 89:1599–1618PubMedPubMedCentralCrossRefGoogle Scholar
  72. Schmidt BZ, Lehmann M, Gutbier S, Nembo E, Noel S, Smirnova L, Forsby A, Hescheler J, Avci HX, Hartung T et al (2017) In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities. Arch Toxicol 91:1–33PubMedCrossRefPubMedCentralGoogle Scholar
  73. Scholz S, Fischer S, Gundel U, Kuster E, Luckenbach T, Voelker D (2008) The zebrafish embryo model in environmental risk assessment–applications beyond acute toxicity testing. Environ Sci Pollut Res Int 15:394–404PubMedCrossRefPubMedCentralGoogle Scholar
  74. Seiler AE, Spielmann H (2011) The validated embryonic stem cell test to predict embryotoxicity in vitro. Nat Protoc 6:961–978PubMedCrossRefPubMedCentralGoogle Scholar
  75. Shinde V, Klima S, Sureshkumar PS, Meganathan K, Jagtap S, Rempel E, Rahnenfuhrer J, Hengstler JG, Waldmann T, Hescheler J et al (2015) Human pluripotent stem cell based developmental toxicity assays for chemical safety screening and systems biology data generation. J Vis Exp 100:e52333Google Scholar
  76. Shinde V, Hoelting L, Srinivasan SP, Meisig J, Meganathan K, Jagtap S, Grinberg M, Liebing J, Bluethgen N, Rahnenfuhrer J et al (2016a) Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Tox and STOP-Tox tests. Arch Toxicol 91:839–864PubMedPubMedCentralCrossRefGoogle Scholar
  77. Shinde V, Perumal Srinivasan S, Henry M, Rotshteyn T, Hescheler J, Rahnenfuhrer J, Grinberg M, Meisig J, Bluthgen N, Waldmann T et al (2016b) Comparison of a teratogenic transcriptome-based predictive test based on human embryonic versus inducible pluripotent stem cells. Stem Cell Res Ther 7:190PubMedPubMedCentralCrossRefGoogle Scholar
  78. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl 48:6974–6998PubMedPubMedCentralCrossRefGoogle Scholar
  79. Smirnova L, Hogberg HT, Leist M, Hartung T (2014) Developmental neurotoxicity—challenges in the 21st century and in vitro opportunities. Altex 31:129–156PubMedPubMedCentralGoogle Scholar
  80. Spate AK, Busskamp H, Niederwieser A, Schart VF, Marx A, Wittmann V (2014) Rapid labeling of metabolically engineered cell-surface glycoconjugates with a carbamate-linked cyclopropene reporter. Bioconjug Chem 25:147–154PubMedCrossRefGoogle Scholar
  81. Stiegler NV, Krug AK, Matt F, Leist M (2011) Assessment of chemical-induced impairment of human neurite outgrowth by multiparametric live cell imaging in high-density cultures. Toxicol Sci 121:73–87PubMedCrossRefPubMedCentralGoogle Scholar
  82. Terron A, Bennekou SH (2018) Towards a regulatory use of alternative developmental neurotoxicity testing (DNT). Toxicol Appl Pharmacol 354:19–23PubMedCrossRefGoogle Scholar
  83. Tonk EC, Robinson JF, Verhoef A, Theunissen PT, Pennings JL, Piersma AH (2013) Valproic acid-induced gene expression responses in rat whole embryo culture and comparison across in vitro developmental and non-developmental models. Reprod Toxicol 41:57–66PubMedCrossRefGoogle Scholar
  84. Tonk EC, Pennings JL, Piersma AH (2015) An adverse outcome pathway framework for neural tube and axial defects mediated by modulation of retinoic acid homeostasis. Reprod Toxicol 55:104–113PubMedCrossRefPubMedCentralGoogle Scholar
  85. van der Burg B, van der Linden S, Man H, Winter R, Jonker L, van Vugt‐Lussenburg B, Brouwe A (2013) A panel of quantitative calux® reporter gene assays for reliable high-throughput toxicity screening of chemicals and complex mixtures. In High‐throughput screening methods in toxicity testing, pp 519–532Google Scholar
  86. van der Linden SC, von Bergh AR, van Vught-Lussenburg BM, Jonker LR, Teunis M, Krul CA, van der Burg B (2014) Development of a panel of high-throughput reporter-gene assays to detect genotoxicity and oxidative stress. Mutat Res Genet Toxicol Environ Mutagen 760:23–32PubMedCrossRefPubMedCentralGoogle Scholar
  87. van Thriel C, Westerink RH, Beste C, Bale AS, Lein PJ, Leist M (2012) Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. Neurotoxicology 33:911–924PubMedCrossRefPubMedCentralGoogle Scholar
  88. van Vliet E, Kuhnl J, Goebel C, Martinozzi-Teissier S, Alepee N, Ashikaga T, Blomeke B, Del Bufalo A, Cluzel M, Corsini E et al (2018) State-of-the-art and new options to assess T cell activation by skin sensitizers: cosmetics Europe workshop. Altex 35:179–192PubMedCrossRefPubMedCentralGoogle Scholar
  89. Waldmann T, Rempel E, Balmer NV, Konig A, Kolde R, Gaspar JA, Henry M, Hescheler J, Sachinidis A, Rahnenfuhrer J et al (2014) Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol 27:408–420PubMedPubMedCentralCrossRefGoogle Scholar
  90. Waldmann T, Grinberg M, Konig A, Rempel E, Schildknecht S, Henry M, Holzer AK, Dreser N, Shinde V, Sachinidis A et al (2017) Stem cell transcriptome responses and corresponding biomarkers that indicate the transition from adaptive responses to cytotoxicity. Chem Res Toxicol 30:905–922PubMedCrossRefPubMedCentralGoogle Scholar
  91. Walmsley RM (2008) GADD45a-GFP GreenScreen HC genotoxicity screening assay. Expert Opin Drug Metab Toxicol 4:827–835PubMedCrossRefPubMedCentralGoogle Scholar
  92. Weigt S, Huebler N, Braunbeck T, von Landenberg F, Broschard TH (2010) Zebrafish teratogenicity test with metabolic activation (mDarT): effects of phase I activation of acetaminophen on zebrafish Danio rerio embryos. Toxicology 275:36–49PubMedCrossRefPubMedCentralGoogle Scholar
  93. Weng MK, Zimmer B, Poltl D, Broeg MP, Ivanova V, Gaspar JA, Sachinidis A, Wullner U, Waldmann T, Leist M (2012) Extensive transcriptional regulation of chromatin modifiers during human neurodevelopment. PLoS ONE 7:e36708PubMedPubMedCentralCrossRefGoogle Scholar
  94. Zhang X, Huang CT, Chen J, Pankratz MT, Xi J, Li J, Yang Y, Lavaute TM, Li XJ, Ayala M et al (2010) Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell 7:90–100PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nadine Dreser
    • 1
  • Katrin Madjar
    • 2
  • Anna-Katharina Holzer
    • 1
  • Marion Kapitza
    • 1
  • Christopher Scholz
    • 1
  • Petra Kranaster
    • 1
    • 7
  • Simon Gutbier
    • 1
    • 8
  • Stefanie Klima
    • 1
  • David Kolb
    • 3
    • 9
  • Christian Dietz
    • 3
    • 9
  • Timo Trefzer
    • 1
    • 10
  • Johannes Meisig
    • 4
  • Christoph van Thriel
    • 5
  • Margit Henry
    • 6
  • Michael R. Berthold
    • 3
  • Nils Blüthgen
    • 4
  • Agapios Sachinidis
    • 6
  • Jörg Rahnenführer
    • 2
  • Jan G. Hengstler
    • 5
  • Tanja Waldmann
    • 1
  • Marcel Leist
    • 1
    Email author
  1. 1.In Vitro Toxicology and Biomedicine, Department Inaugurated By the Doerenkamp-Zbinden Chair FoundationUniversity of KonstanzKonstanzGermany
  2. 2.Department of StatisticsTU DortmundDortmundGermany
  3. 3.Department of Computer and Information ScienceUniversity of KonstanzKonstanzGermany
  4. 4.Institute of PathologyCharité-UniversitätsmedizinBerlinGermany
  5. 5.Leibniz Research Centre for Working Environment and Human Factors (IfADo)Technical University of DortmundDortmundGermany
  6. 6.Center of Physiology and Pathophysiology, Institute of NeurophysiologyUniversity of Cologne (UKK)CologneGermany
  7. 7.Konstanz Research School Chemical Biology (KoRS-CB)University of KonstanzKonstanzGermany
  8. 8.Roche Pharma DevelopmentBaselSwitzerland
  9. 9.KNIME GmbHKonstanzGermany
  10. 10.Digital Health Center, Berlin Institute of Health (BIH)Charité-UniversitätsmedizinBerlinGermany

Personalised recommendations