Advertisement

Ethyl acrylate: influence of sex or atopy on perceptual ratings and eye blink frequency

  • Kirsten SuckerEmail author
  • Frank Hoffmeyer
  • Christian Monsé
  • Birger Jettkant
  • Hans Berresheim
  • Nina Rosenkranz
  • Monika Raulf
  • Jürgen Bünger
  • Thomas Brüning
Organ Toxicity and Mechanisms
  • 45 Downloads

Abstract

Occupational exposure limits (OELs) are derived for protection from health hazards, assuming that exposed subjects are healthy adult workers. Whether differences in susceptibility to sensory irritation effects from airborne chemicals have to be taken into account is currently under discussion. Thus, we chose atopics as a healthy but possibly susceptible subpopulation that can be identified with a clinical test. To investigate the influence of sex or atopy on sensitivity to airborne chemicals, 22 subjects were exposed for 4 h to ethyl acrylate at three concentrations: 0.05 ppm (odor threshold; sham), 5 ppm (constant), and varying exposure between 0 and 10 ppm. Odor intensity decreased and eye irritation ratings increased in a dose-dependent manner, reflecting the time course of the exposure scenarios. The reports of moderate-to-strong eye irritation were verified by significant increases in eye blink frequency. Our results show that women reported subjective eye irritation to an increasing degree. However, these sex-related differences in ratings could not be verified by objective assessment of eye blink frequency. Atopic subjects reported higher odor intensity than non-atopic subjects, but only during the sham (odorous but not irritating) exposure condition. Differences in ratings on annoyance, and eye or nose irritation were not found. Furthermore, the study revealed that atopic subjects might belong to a group of subjects with frequent eye blink activity. Although the relative increase in blink rates was more pronounced in non-atopic subjects, atopic subjects had significant higher blink rates at the end of the exposure to varying ethyl acrylate concentrations. Our results do not support that atopy enhances chemosensory effects if only the increase of blink rates and not the absolute height are considered as adverse effect. Nevertheless, the results indicate that individuals with frequent eye blink activity should be distinguished from those with normal eye blink activity while investigating blink rates as objective parameter of eye irritation.

Keywords

Ethyl acrylate Sensory irritation Eye blink frequency Susceptibility Atopy 

Notes

Acknowledgements

The authors would like to thank all participants as well as the staff of the working group for conduction the experiment and the extensive chemical and physiological analyses.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

204_2019_2568_MOESM1_ESM.docx (553 kb)
Supplementary material 1 (DOCX 553 kb)

References

  1. Acosta MC, Luna C, Quirce S, Belmonte C, Gallar J (2013) Changes in sensory activity of ocular surface sensory nerves during allergic keratoconjunctivitis. Pain 154(11):2353–2362.  https://doi.org/10.1016/j.pain.2013.07.012 CrossRefGoogle Scholar
  2. Andersson L, Bende M, Millqvist E, Nordin S (2009) Attention bias and sensitization in chemical sensitivity. J Psychosom Res 66(5):407–416.  https://doi.org/10.1016/j.jpsychores.2008.11.005 CrossRefGoogle Scholar
  3. Andersson L, Lundberg C, Aström J, Nordin S (2011) Chemosensory attention, habituation and detection in women and men. Int J Psychophysiol 79(2):316–322.  https://doi.org/10.1016/j.ijpsycho.2010.11.008 CrossRefGoogle Scholar
  4. Andersson L, Claeson AS, Ledin L, Wisting F, Nordin S (2013) The influence of health-risk perception and distress on reactions to low-level chemical exposure. Front Psychol 4:816.  https://doi.org/10.3389/fpsyg.2013.00816 Google Scholar
  5. Bailer J, Witthöft M, Rist F (2006) The Chemical Odor Sensitivity Scale: reliability and validity of a screening instrument for idiopathic environmental intolerance. J Psychosom Res 61(1):71–79.  https://doi.org/10.1016/j.jpsychores.2005.11.005 CrossRefGoogle Scholar
  6. Bengtsson S, Berglund H, Gulyas B, Cohen E, Savic I (2001) Brain activation during odor perception in males and females. NeuroReport 12(9):2027–2033CrossRefGoogle Scholar
  7. Bentivoglio AR, Bressman SB, Cassetta E, Carretta D, Tonali P, Albanese A (1997) Analysis of blink rate patterns in normal subjects. Mov Disord 12(6):1028–1034.  https://doi.org/10.1002/mds.870120629 CrossRefGoogle Scholar
  8. Brüning T, Bartsch R, Bolt HM, Desel H, Drexler H, Gundert-Remy U, Hartwig A, Jäckh R, Leibold E, Pallapies D, Rettenmeier AW, Schlüter G, Stropp G, Sucker K, Triebig G, Westphal G, van Thriel C (2014) Sensory irritation as a basis for setting occupational exposure limits. Arch Toxicol 88(10):1855–1879.  https://doi.org/10.1007/s00204-014-1346-z CrossRefGoogle Scholar
  9. Claeson AS, Andersson L (2017) Symptoms from masked acrolein exposure suggest altered trigeminal reactivity in chemical intolerance. Neurotoxicology 60:92–98.  https://doi.org/10.1016/j.neuro.2017.03.007 CrossRefGoogle Scholar
  10. Claeson AS, Nordin S (2011) Gender differences in nasal chemesthesis: a study of detection and perceived intensity. Chem Percept 4:25–31.  https://doi.org/10.1007/s12078-011-9084-6 CrossRefGoogle Scholar
  11. Claeson AS, Palmquist E, Lind N, Nordin S (2016) Symptom-trigger factors other than allergens in asthma and allergy. Int J Environ Health Res 26(4):448–457.  https://doi.org/10.1080/09603123.2015.1135314 CrossRefGoogle Scholar
  12. Cortese BM, Schumann AY, Howell AN, McConnell PA, Yang QX, Uhde TW (2018) Preliminary evidence for differential olfactory and trigeminal processing in combat veterans with and without PTSD. Neuroimage Clin 17:378–387.  https://doi.org/10.1016/j.nicl.2017.09.018 CrossRefGoogle Scholar
  13. Cruz AA, Garcia DM, Pinto SP (2011) Spontaneous eyeblink activity. Ocul Surf 9(1):29–41.  https://doi.org/10.1016/S1542-0124(11)70007-6 CrossRefGoogle Scholar
  14. Dai YJ, Zhang X, Yang Y, Nan HY, Yu Y, Sun Q, Yan LF, Hu B, Zhang J, Qiu ZY, Gao Y, Cui GB, Chen BL, Wang W (2018) Gender differences in functional connectivities between insular subdivisions and selective pain-related brain structures. J Headache Pain 19(1):24.  https://doi.org/10.1186/s10194-018-0849-z CrossRefGoogle Scholar
  15. Dalton P (2001) Evaluating the human response to sensory irritation: implications for setting occupational exposure limits. AIHAJ 62(6):723–729.  https://doi.org/10.1080/15298660108984681 CrossRefGoogle Scholar
  16. Dalton P (2003) Upper airway irritation, odor perception and health risk due to airborne chemicals. Toxicol Lett 140–141:239–248.  https://doi.org/10.1016/S0378-4274(02)00510-6 CrossRefGoogle Scholar
  17. DFG (2007) MAK value documentation ethyl acrylateGoogle Scholar
  18. DFG (2012) MAK value documentation 2-ethylhexanolGoogle Scholar
  19. Doty RL, Cometto-Muniz JE, Jalowayski AA, Dalton P, Kendal-Reed M, Hodgson M (2004) Assessment of upper respiratory tract and ocular irritative effects of volatile chemicals in humans. Crit Rev Toxicol 34(2):85–142.  https://doi.org/10.1080/10408440490269586 CrossRefGoogle Scholar
  20. Doughty MJ, Naase T (2006) Further analysis of the human spontaneous eye blink rate by a cluster analysis-based approach to categorize individuals with ‘normal’ versus ‘frequent’ eye blink activity. Eye Contact Lens 32(6):294–299.  https://doi.org/10.1097/01.icl.0000224359.32709.4d CrossRefGoogle Scholar
  21. Doughty MJ, Naase T, Button NF (2009) Frequent spontaneous eyeblink activity associated with reduced conjunctival surface (trigeminal nerve) tactile sensitivity. Graefes Arch Clin Exp Ophthalmol 247(7):939–946.  https://doi.org/10.1007/s00417-008-1028-8 CrossRefGoogle Scholar
  22. Emmen HH, Muijser H, Arts JH, Prinsen MK (2003) Human volunteer study with PGME: eye irritation during vapour exposure. Toxicol Lett 140–141:249–259.  https://doi.org/10.1016/S0378-4274(03)00021-3 CrossRefGoogle Scholar
  23. Green BG, Dalton P, Cowart B, Shaffer G, Rankin K, Higgins J (1996) Evaluating the ‘Labeled Magnitude Scale’ for measuring sensations of taste and smell. Chem Senses 21(3):323–334.  https://doi.org/10.1093/chemse/21.3.323 CrossRefGoogle Scholar
  24. Haftenberger M, Laußmann D, Ellert U, Kalcklösch M, Langen U, Schlaud M, Schmitz R, Thamm M (2013) Prevalence of sensitisation to aeroallergens and food allergens. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 56:687–697CrossRefGoogle Scholar
  25. Haumann K, Kiesswetter E, van Thriel C, Blaszkewicz M, Golka K, Seeber A (2003) Breathing and heart rate during experimental solvent exposure of young adults with self-reported multiple chemical sensitivity (sMCS). Neurotoxicology 24(2):179–186.  https://doi.org/10.1016/S0161-813X(02)00213-9 CrossRefGoogle Scholar
  26. Hoffmeyer F, Sucker K, Berresheim H, Monsé C, Jettkant B, Beine A, Raulf M, Bünger J, Brüning T (2017) Impact of internal and external factors on EBC-pH and FeNO changes in humans following challenge with ethyl acrylate. Adv Exp Med Biol 1020:7–16.  https://doi.org/10.1007/5584_2017_1 CrossRefGoogle Scholar
  27. Hoffmeyer F, Sucker K, Berresheim H, Monsé C, Jettkant B, Beine A, Raulf M, Brüning T, Bünger J (2019) Methodological implications and repeatability of nasal nitric oxide: relevance for challenge studies. Adv Exp Med Biol. 1113:1–10.  https://doi.org/10.1007/5584_2018_166 Google Scholar
  28. Hughes A, Hirsch C, Chalder T, Moss-Morris R (2016) Attentional and interpretive bias towards illness-related information in chronic fatigue syndrome: a systematic review. Br J Health Psychol 21(4):741–763.  https://doi.org/10.1111/bjhp.12207 CrossRefGoogle Scholar
  29. Hughes AM, Chalder T, Hirsch CR, Moss-Morris R (2017) An attention and interpretation bias for illness-specific information in chronic fatigue syndrome. Psychol Med 47(5):853–865.  https://doi.org/10.1017/S0033291716002890 CrossRefGoogle Scholar
  30. Hummel T, Sekinger B, Wolf SR, Pauli E, Kobal G (1997) ‘Sniffin’ sticks’: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses 22(1):39–52.  https://doi.org/10.1093/chemse/22.1.39 CrossRefGoogle Scholar
  31. Johansson SGO, Bieber T, Dahl R, Friedmann PS, Lanier BQ, Lockey RF, Motala C, Ortega Martell JA, Platts-Mills TAE, Ring J, Thien F, Van Cauwenberge P (2004) Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol 113(5):832–836.  https://doi.org/10.1016/j.jaci.2003.12.591 CrossRefGoogle Scholar
  32. Johansson MK, Johanson G, Öberg M (2012) How are asthmatics included in the derivation of guideline values for emergency planning and response? Regul Toxicol Pharmacol 63(3):461–470.  https://doi.org/10.1016/j.yrtph.2012.05.010 CrossRefGoogle Scholar
  33. Johansson MK, Johanson G, Öberg M (2016) Evaluation of the experimental basis for assessment factors to protect individuals with asthma from health effects during short-term exposure to airborne chemicals. Crit Rev Toxicol 46(3):241–260.  https://doi.org/10.3109/10408444.2015.1092498 CrossRefGoogle Scholar
  34. Kleinbeck S, Schäper M, Zimmermann A, Blaszkewicz M, Brüning T, van Thriel C (2017) Prediction of human sensory irritation due to ethyl acrylate: the appropriateness of time-weighted average concentration × time models for varying concentrations. Arch Toxicol 91(9):3051–3064.  https://doi.org/10.1007/s00204-017-1934-9 CrossRefGoogle Scholar
  35. Kleinbeck S, Pacharra M, Schäper M, Blaszkewicz M, Golka K, Brüning T, van Thriel (2018) Sensorische Irritationen durch Ameisensäure: Reagieren allergische Probanden stärker auf kontrollierte Expositionen? (Sensory irritations due to formic acid: Do allergic subjects react more strongly to controlled exposures?) In: Deutschen Gesellschaft für Arbeitsmedizin und Umweltmedizin e.V. (Hrsg.): Dokumentation der 58. Jahrestagung der DGAUM, 7.-9. März 2018 in München, p 50Google Scholar
  36. Koch K, Pauly K, Kellermann T, Seiferth NY, Reske M, Backes V, Stöcker T, Shah NJ, Amunts K, Kircher T, Schneider F, Habel U (2007) Gender differences in the cognitive control of emotion: an fMRI study. Neuropsychologia 45(12):2744–2754.  https://doi.org/10.1016/j.neuropsychologia.2007.04.012 CrossRefGoogle Scholar
  37. Lang I, Bruckner T, Triebig G (2008) Formaldehyde and chemosensory irritation in humans: a controlled human exposure study. Regul Toxicol Pharmacol 50(1):23–36.  https://doi.org/10.1016/j.yrtph.2007.08.012 CrossRefGoogle Scholar
  38. Laux L, Glanzmann P, Schaffner P, Spielberger CD (1981) Das State-Trait-Angstinventar (STAI). Beltz Testgesellschaft, WeinheimGoogle Scholar
  39. Lundström JN, Frasnelli J, Larsson M, Hummel T (2005) Sex differentiated responses to intranasal trigeminal stimuli. Int J Psychophysiol 57(3):181–186.  https://doi.org/10.1016/j.ijpsycho.2005.01.003 CrossRefGoogle Scholar
  40. Lungu O, Potvin S, Tikàsz A, Mendrek A (2015) Sex differences in effective fronto-limbic connectivity during negative emotion processing. Psychoneuroendocrinology. 62:180–188.  https://doi.org/10.1016/j.psyneuen.2015.08.012 CrossRefGoogle Scholar
  41. Martinez B, Karunanayaka P, Wang J, Tobia MJ, Vasavada M, Eslinger PJ, Yang QX (2017) Different patterns of age-related central olfactory decline in men and women as quantified by olfactory fMRI. Oncotarget 8(45):79212–79222.  https://doi.org/10.18632/oncotarget.16977 CrossRefGoogle Scholar
  42. Monsé C, Sucker K, van Thriel C, Broding HC, Jettkant B, Berresheim H, Wiethege T, Käfferlein H, Merget R, Bünger J, Brüning T (2012) Considerations for the design and technical setup of a human whole-body exposure chamber. Inhal Toxicol 24(2):99–108.  https://doi.org/10.3109/08958378.2011.640362 CrossRefGoogle Scholar
  43. Monster AW, Chan HC, O’Connor D (1978) Long-term trends in human eye blink rate. Biotelem Patient Monit 5(4):206–222.  https://doi.org/10.1016/0039-6257(80)90131-9 Google Scholar
  44. Müller JU, Bruckner T, Triebig G (2013) Exposure study to examine chemosensory effects of formaldehyde on hyposensitive and hypersensitive males. Int Arch Occup Environ Health 86(1):107–117.  https://doi.org/10.1007/s00420-012-0745-9 CrossRefGoogle Scholar
  45. Nakamori K, Odawara M, Nakajima T, Mizutani T, Tsubota K (1997) Blinking is controlled primarily by ocular surface conditions. Am J Ophthalmol 124(1):24–30.  https://doi.org/10.1016/S0002-9394(14)71639-3 CrossRefGoogle Scholar
  46. Nielsen GD, Wolkoff P (2017) Evaluation of airborne sensory irritants for setting exposure limits or guidelines: a systematic approach. Regul Toxicol Pharmacol 90:308–317.  https://doi.org/10.1016/j.yrtph.2017.09.015 CrossRefGoogle Scholar
  47. Nielsen GD, Wolkoff P, Alarie Y (2007) Sensory irritation: risk assessment approaches. Regul Toxicol Pharmacol 48:6–18.  https://doi.org/10.1016/j.yrtph.2006.11.005 CrossRefGoogle Scholar
  48. Nøjgaard JK, Christensen KB, Wolkoff P (2005) The effect on human eye blink frequency of exposure to limonene oxidation products and methacrolein. Toxicol Lett 156(2):241–251.  https://doi.org/10.1016/j.toxlet.2004.11.013 CrossRefGoogle Scholar
  49. Nordin S (2004) Normative data for the chemical sensitivity scale. J Environ Psychol 24(3):399–403.  https://doi.org/10.1016/S0272-4944(03)00074-4 CrossRefGoogle Scholar
  50. Nordin S, Millqvist E, Löwhagen O, Bende M (2003) The Chemical Sensitivity Scale: psychometric properties and comparison with the noise sensitivity scale. Journal of Environmental Psychology 23(4):357–365.  https://doi.org/10.1016/S0272-4944(03)00002-1 CrossRefGoogle Scholar
  51. Nordin S, Claeson A-S, Andersson M, Sommar L, Andree J, Lundqvist K (2013) Impact of health-risk perception on odor perception and cognitive performance. Chemosens Percept 6(4):190–197.  https://doi.org/10.3389/fpsyg.2013.00816 CrossRefGoogle Scholar
  52. Ohla K, Lundström JN (2013) Sex differences in chemosensation: sensory or emotional? Front Hum Neurosci 7:607.  https://doi.org/10.3389/fnhum.2013.00607 CrossRefGoogle Scholar
  53. Olofsson JK, Nordin S (2004) Gender differences in chemosensory perception and event-related potentials. Chem Senses 29(7):629–637.  https://doi.org/10.1093/chemse/bjh066 CrossRefGoogle Scholar
  54. Ørbæk P, Persson R, Osterberg K (2005) Impact of trait anxiety and social conformity on responses to experimental chemical challenge. Environ Toxicol Pharmacol 19(3):659–664.  https://doi.org/10.1016/j.etap.2004.12.033 CrossRefGoogle Scholar
  55. Pacharra M, Kleinbeck S, Schäper M, Blaszkewicz M, van Thriel C (2016a) Multidimensional assessment of self-reported chemical intolerance and its impact on chemosensory effects during ammonia exposure. Int Arch Occup Environ Health 89(6):947–959.  https://doi.org/10.1007/s00420-016-1134-6 CrossRefGoogle Scholar
  56. Pacharra M, Kleinbeck S, Schäper M, Juran SA, Hey K, Blaszkewicz M, Lehmann ML, Golka K, van Thriel C (2016b) Interindividual differences in chemosensory perception: toward a better understanding of perceptual ratings during chemical exposures. J Toxicol Environ Health A 79(22–23):1026–1040.  https://doi.org/10.1080/15287394.2016.1219547 CrossRefGoogle Scholar
  57. Pacharra M, Kleinbeck S, Schäper M, Blaszkewicz M, Golka K, van Thriel C (2017) Does seasonal allergic rhinitis increase sensitivity to ammonia exposure? Int J Hyg Environ Health 220(5):840–848.  https://doi.org/10.1016/j.ijheh.2017.03.013 CrossRefGoogle Scholar
  58. Petrova M, Diamond J, Schuster B, Dalton P (2008) Evaluation of trigeminal sensitivity to ammonia in asthmatics and healthy human volunteers. Inhal Toxicol 20(12):1085–1092.  https://doi.org/10.1080/08958370802120396 CrossRefGoogle Scholar
  59. Rethage T, Eis D, Gieler U, Nowak D, Wiesmüller GA, Lacour M, Hodapp V, Stilianakis N, Eikmann TF, Herr CE (2008) Assessment of environmental worry in health-related settings: re-evaluation and modification of an environmental worry scale. Int J Hyg Environ Health 211(1–2):105–113.  https://doi.org/10.1016/j.ijheh.2007.01.030 CrossRefGoogle Scholar
  60. Scheibe M, Opatz O, Hummel T (2009) Are there sex-related differences in responses to repetitive olfactory/trigeminal stimuli? Eur Arch Otorhinolaryngol 266(8):1323–1326.  https://doi.org/10.1007/s00405-008-0860-0 CrossRefGoogle Scholar
  61. Shusterman D, Murphy MA, Balmes J (2003) Influence of age, gender, and allergy status on nasal reactivity to inhaled chlorine. Inhal Toxicol 15(12):1179–1189.  https://doi.org/10.1080/08958370390229852 CrossRefGoogle Scholar
  62. Shusterman D, Tarun A, Murphy MA, Morris J (2005) Seasonal allergic rhinitic and normal subjects respond differentially to nasal provocation with acetic acid vapor. Inhal Toxicol 17(3):147–152.  https://doi.org/10.1080/08958370590904508 CrossRefGoogle Scholar
  63. Situ P, Simpson TL, Fonn D, Jones LW (2008) Conjunctival and corneal pneumatic sensitivity is associated with signs and symptoms of ocular dryness. Invest Ophthalmol Vis Sci 49(7):2971–2976.  https://doi.org/10.1167/iovs.08-1734 CrossRefGoogle Scholar
  64. Spielberger CD (1983) Manual for the State-Trait Anxiety Inventory. Consulting Psychologists Press, Palo Alto, CAGoogle Scholar
  65. van Leeuwen JMC, Vink M, Fernández G, Hermans EJ, Joëls M, Kahn RS, Vinkers CH (2018) At-risk individuals display altered brain activity following stress. Neuropsychopharmacology 43(9):1954–1960.  https://doi.org/10.1038/s41386-018-0026-8 CrossRefGoogle Scholar
  66. van Thriel C, Kiesswetter E, Schäper M, Blaszkewicz M, Golka K, Seeber A (2005) An integrative approach considering acute symptoms and intensity ratings of chemosensory sensations during experimental exposures. Environ Toxicol Pharmacol 19(3):589–598.  https://doi.org/10.1016/j.etap.2004.12.024 CrossRefGoogle Scholar
  67. van Thriel C, Triebig G, Bolt HM (2006a) Editorial: evaluation of chemosensory effects due to occupational exposures. Int Arch Occup Environ Health 79(4):265–267.  https://doi.org/10.1007/s00420-005-0058-3 CrossRefGoogle Scholar
  68. van Thriel C, Schäper M, Kiesswetter E, Kleinbeck S, Juran S, Blaszkewicz M, Fricke HH, Altmann L, Berresheim H, Brüning T (2006b) From chemosensory thresholds to whole body exposures—experimental approaches evaluating chemosensory effects of chemicals. Int Arch Occup Environ Health 79(4):308–321.  https://doi.org/10.1007/s00420-005-0057-4 CrossRefGoogle Scholar
  69. van Thriel C, Kleinbeck S, Schaeper M, Blaszkewicz M, Golka K, Lehmann M, Brüning T (2012) Health effects of irritants—which role does age play? (Gesundheitliche Effekte durch Reizstoffe—welche Rolle spielt das Lebensalter?) Arbeitsmed. Sozialmed Umweltmed 47(3):126Google Scholar
  70. Wålinder R, Ernstgård L, Norbäck D, Wieslander G, Johanson G (2008) Acute effects of 1-octen-3-ol, a microbial volatile organic compound (MVOC)—an experimental study. Toxicol Lett 181(3):141–147.  https://doi.org/10.1016/j.toxlet.2008.07.013 CrossRefGoogle Scholar
  71. Wintermann GB, Donix M, Joraschky P, Gerber J, Petrowski K (2013) Altered olfactory processing of stress-related body odors and artificial odors in patients with panic disorder. PLoS One 8(9):e74655.  https://doi.org/10.1371/journal.pone.0074655 CrossRefGoogle Scholar
  72. Yolton DP, Yolton RL, López R, Bogner B, Stevens R, Rao D (1994) The effects of gender and birth control pill use on spontaneous blink rates. J Am Optom Assoc 65(11):763–770Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA)BochumGermany

Personalised recommendations