Toxicity of ionizing radiation (IR) in a human induced pluripotent stem cell (hiPSC)-derived 3D early neurodevelopmental model

  • Annemarie Klatt
  • Eugenia Salzmann
  • Lisanne-Josephin Schneider
  • Alexander Reifschneider
  • Milena Korneck
  • Patrick Hermle
  • Alexander Bürkle
  • Dieter Stoll
  • Suzanne KadereitEmail author
In vitro systems


Prenatal brain development is a complex and sensitive process, highly susceptible to environmental influences such as pollutants, stress, malnutrition, drugs, tobacco exposure, or ionizing radiation (IR). Disturbances in development may cause life-long disabilities and diseases, such as ADHD, childhood cancers, cognitive problems, depression, anxiety and more severe developmental disabilities. Due to increasing medical imaging, radiation therapy, natural terrestrial radiation, radioactive pollution and long-distance flights, humans are increasingly exposed to IR. However, data on impact of IR on very early human brain development are scarce, particularly in the very first weeks of gestation. Here we investigated the effects of low-dose X-ray IR (1 Gy) in a 3D early brain developmental model derived from human pluripotent stem cells. In this model very early neural stem cells, neuroectodermal progenitor cells (NEP), were exposed to low-dose IR and direct as well as delayed effects were investigated. Expression of 20 different marker genes crucial for normal neural development was determined 48 h and 9 days post IR (pIR). All but one of the analyzed marker genes were reduced 48 h after IR, and all but seven genes normalized their expression by day 9 pIR. Among the seven markers were genes involved in neurodevelopmental and growth abnormalities. Moreover, we could show that stemness of the NEP was reduced after IR. We were thus able to identify a significant impact of radiation in cells surviving low-dose IR, suggesting that low-dose IR could have a negative impact on the early developing human brain, with potential later detrimental effects.


Ionizing irradiation Developmental neurotoxicity Pluripotent stem cells 3D in vitro model 



This work was supported by Grant 02NUK025B from the German Ministry for Education and Research (BMBF), AK and ES were supported by the InViTe PhD program from the Baden-Wuerttemberg Ministry for Science, Research and Art (MWK Baden-Württemberg). We also thank George Daley, Harvard Medical School/Children’s Hospital Boston, for providing the human iPSC, and Maria Moreno-Villanueva and Thilo Sindlinger, University of Konstanz, for very helpful input with the irradiation experiments. 

Compliance with ethical standards

Conflict of interest

The manuscript does not contain clinical studies or patient data and the authors declare no conflict of interest.

Supplementary material

204_2019_2553_MOESM1_ESM.pptx (807 kb)
Supplementary material 1 (PPTX 807 kb)


  1. Acharya MM, Lan ML, Kan VH et al (2010) Consequences of ionizing radiation-induced damage in human neural stem cells. Free Radic Biol Med 49:1846–1855. CrossRefPubMedGoogle Scholar
  2. Arroyo M, Kuriyama R, Trimborn M et al (2017) MCPH1, mutated in primary microcephaly, is required for efficient chromosome alignment during mitosis. Sci Rep 7:13019. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ayanlaja AA, Xiong Y, Gao Y et al (2017) Distinct features of doublecortin as a marker of neuronal migration and its implications in cancer cell mobility. Front Mol Neurosci 10:199. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bajinskis A, Lindegren H, Johansson L, Harms-Ringdahl M, Forsby A (2011) Low-dose/dose-rate γ radiation depresses neural differentiation and alters protein expression profiles in neuroblastoma SH-SY5Y cells and C17.2 neural stem cells. Radiat Res 175:185–192CrossRefPubMedGoogle Scholar
  5. Banda M, Bommineni A, Thomas RA, Luckinbill LS, Tucker JD (2008) Evaluation and validation of housekeeping genes in response to ionizing radiation and chemical exposure for normalizing RNA expression in real-time PCR. Mutat Res 649:126–134. CrossRefPubMedGoogle Scholar
  6. Bansod S, Kageyama R, Ohtsuka T (2017) Hes5 regulates the transition timing of neurogenesis and gliogenesis in mammalian neocortical development. Development 144:3156–3167. CrossRefPubMedGoogle Scholar
  7. Bar Yaacov R, Eshel R, Farhi E, Shemuluvich F, Kaplan T, Birnbaum RY (2019) Functional characterization of the ZEB2 regulatory landscape. Hum Mol Genet 28:1487–1497. CrossRefPubMedGoogle Scholar
  8. Barazzuol L, Jeggo PA (2016) In vivo sensitivity of the embryonic and adult neural stem cell compartments to low-dose radiation. J Radiat Res 57:i2–i10. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Beltran M, Puig I, Pena C et al (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial–mesenchymal transition. Genes Dev 22:756–769. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Betlazar C, Middleton RJ, Banati RB, Liu G-J (2016) The impact of high and low dose ionising radiation on the central nervous system. Redox Biol 9:144–156. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bishop KM, Goudreau G, O’Leary DD (2000) Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288:344–349CrossRefPubMedGoogle Scholar
  12. Boulet SL, Boyle CA, Schieve LA (2009) Health care use and health and functional impact of developmental disabilities among US children, 1997–2005. Arch Pediatr Adolesc Med 163:19. CrossRefPubMedGoogle Scholar
  13. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284. CrossRefPubMedGoogle Scholar
  14. Broustas CG, Lieberman HB (2014) DNA damage response genes and the development of cancer metastasis. Radiat Res 181:111–130. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cabrera JR, Lucas JJ (2017) MAP2 splicing is altered in Huntington’s disease. Brain Pathol 27:181–189. CrossRefPubMedGoogle Scholar
  16. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen H, Chong ZZ, De Toledo SM, Azzam EI, Elkabes S, Souayah N (2016) Delayed activation of human microglial cells by high dose ionizing radiation. Brain Res 1646:193–198. CrossRefPubMedGoogle Scholar
  18. Chen W, Ju SS, Lu T et al (2017) Directional delivery of RSPO1 by mesenchymal stem cells ameliorates radiation-induced intestinal injury. Cytokine 95:27–34. CrossRefPubMedGoogle Scholar
  19. Chin HW, Maruyama Y (1984) Age at treatment and long-term performance results in medulloblastoma. Cancer 53:1952–1958CrossRefPubMedGoogle Scholar
  20. Cho I-T, Lim Y, Golden JA, Cho G (2017) Aristaless related homeobox (ARX) interacts with β-catenin, BCL9, and P300 to regulate canonical Wnt signaling. PLoS One 12:e0170282. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Choi J, Kim JE, Kim TK et al (2015) TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors. Neuropharmacology 97:346–356. CrossRefPubMedGoogle Scholar
  22. Comijn J, Berx G, Vermassen P et al (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278. CrossRefPubMedGoogle Scholar
  23. Dehmelt L, Halpain S (2005) The MAP2/Tau family of microtubule-associated proteins. Genome Biol 6:204. CrossRefGoogle Scholar
  24. DeSesso JM, Scialli AR, Holson JF (1999) Apparent lability of neural tube closure in laboratory animals and humans. Am J Med Genet 87:143–162CrossRefPubMedGoogle Scholar
  25. Dies KA, Bodell A, Hisama FM et al (2013) Schizencephaly: association with young maternal age, alcohol use, and lack of prenatal care. J Child Neurol 28:198–203. CrossRefPubMedGoogle Scholar
  26. Dupe V, Rochard L, Mercier S et al (2011) NOTCH, a new signaling pathway implicated in holoprosencephaly. Hum Mol Genet 20:1122–1131. CrossRefPubMedGoogle Scholar
  27. Etienne O, Roque T, Haton C, Boussin D, ç ois Boussin FD (2012) Variation of radiation-sensitivity of neural stem and progenitor cell populations within the developing mouse brain. Int J Radiat Biol 88:694–702. CrossRefPubMedGoogle Scholar
  28. Fasano CA, Dimos JT, Ivanova NB, Lowry N, Lemischka IR, Temple S (2007) shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell 1:87–99. CrossRefPubMedGoogle Scholar
  29. Fike JR, Rosi S, Limoli CL (2009) Neural precursor cells and central nervous system radiation sensitivity. Semin Radiat Oncol 19:122–132. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fishman K, Baure J, Zou Y et al (2009) Radiation-induced reductions in neurogenesis are ameliorated in mice deficient in CuZnSOD or MnSOD. Free Radic Biol Med 47:1459–1467. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Florian C, Bahi-Buisson N, Bienvenu T (2012) FOXG1-related disorders: from clinical description to molecular genetics. Mol Syndromol 2:153–163 (000327329) PubMedGoogle Scholar
  32. Gan HK, Bernstein LJ, Brown J et al (2011) Cognitive functioning after radiotherapy or chemoradiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 81:126–134. CrossRefPubMedGoogle Scholar
  33. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF 3rd, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 101:8174–8179. CrossRefPubMedGoogle Scholar
  34. Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368:2167–2178. CrossRefPubMedGoogle Scholar
  35. Grandjean P, Landrigan PJ (2014) Neurobehavioural effects of developmental toxicity. Lancet Neural 13:330–338. CrossRefGoogle Scholar
  36. Gregory KJ, Bibbo G, Pattison JE (2008) On the uncertainties in effective dose estimates of adult CT head scans. Med Phys 35:3501–3510. CrossRefPubMedGoogle Scholar
  37. Gumy LF, Katrukha EA, Grigoriev I et al (2017) MAP2 defines a pre-axonal filtering zone to regulate KIF1- versus KIF5-dependent cargo transport in sensory neurons. Neuron 94:347.e7–362.e7. CrossRefGoogle Scholar
  38. Guo A, Salomoni P, Luo J et al (2000) The function of PML in p53-dependent apoptosis. Nat Cell Biol 2:730–736. CrossRefPubMedGoogle Scholar
  39. Hall P, Adami H-O, Trichopoulos D et al (2004) Effect of low doses of ionising radiation in infancy on cognitive function in adulthood: swedish population based cohort study. BMJ (Clin Res ed) 328:19. CrossRefGoogle Scholar
  40. Hill MA (2019) Embryology Carnegie stage table. Accessed 27 May 2019
  41. Hoelting L, Scheinhardt B, Bondarenko O et al (2013) A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles. Arch Toxicol 87:721–733. CrossRefPubMedGoogle Scholar
  42. Hou P-S, Chuang C-Y, Kao C-F et al (2013) LHX2 regulates the neural differentiation of human embryonic stem cells via transcriptional modulation of PAX6 and CER1. Nucleic Acids Res 41:7753–7770. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hu M, Xia M, Chen X et al (2010) MicroRNA-141 regulates Smad interacting protein 1 (SIP1) and inhibits migration and invasion of colorectal cancer cells. Dig Dis Sci 55:2365–2372. CrossRefPubMedGoogle Scholar
  44. Hubbert C, Guardiola A, Shao R et al (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458. CrossRefGoogle Scholar
  45. Ivanov VN, Hei TK (2014) Radiation-induced glioblastoma signaling cascade regulates viability, apoptosis and differentiation of neural stem cells (NSC). Apoptosis 19:1736–1754. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Joseph-Bravo P, Jaimes-Hoy L, Uribe R-M, Charli J-L (2015) 60 years of neuroendocrinology: TRH, the first hypophysiotropic releasing hormone isolated: control of the pituitary–thyroid axis. J Endocrinol 226:T85–T100. CrossRefPubMedGoogle Scholar
  47. Kageyama R, Shimojo H, Ohtsuka T (2018) Dynamic control of neural stem cells by bHLH factors. Neurosci Res 138:12–18. CrossRefPubMedGoogle Scholar
  48. Kalm M, Lannering B, Björk-Eriksson T, Blomgren K (2009) Irradiation-induced loss of microglia in the young brain. J Neuroimmunol 206:70–75. CrossRefPubMedGoogle Scholar
  49. Kamata T, Katsube K-i, Michikawa M, Yamada M, Takada S, Mizusawa H (2004) R-spondin, a novel gene with thrombospondin type 1 domain, was expressed in the dorsal neural tube and affected in Wnts mutants. Biochim Biophys Acta 1676:51–62. CrossRefPubMedGoogle Scholar
  50. Kato M, Dobyns WB (2003) Lissencephaly and the molecular basis of neuronal migration. Hum Mol Genet 12:89R–96R. CrossRefGoogle Scholar
  51. Katsura M, Cyou-Nakamine H, Zen Q et al (2016) Effects of chronic low-dose radiation on human neural progenitor cells. Sci Rep 6:20027. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kelly JA, Boyle NT, Cole N et al (2015) First-in-class thyrotropin-releasing hormone (TRH)-based compound binds to a pharmacologically distinct TRH receptor subtype in human brain and is effective in neurodegenerative models. Neuropharmacology 89:193–203. CrossRefPubMedGoogle Scholar
  53. Khan A, Budnick A, Barnea D, Feldman DR, Tonorezos ES (2018) Hearing loss in adult survivors of childhood cancer treated with radiotherapy. Children 5:1–9. CrossRefGoogle Scholar
  54. Kovalchuk A, Kolb B (2017) Low dose radiation effects on the brain—from mechanisms and behavioral outcomes to mitigation strategies. Cell Cycle 16:1266. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lee VMY, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159. CrossRefGoogle Scholar
  56. Li J-Y, Chai B, Zhang W, Fritze DM, Zhang C, Mulholland MW (2014) LGR4 and its ligands, R-spondin 1 and R-spondin 3, regulate food intake in the hypothalamus of male rats. Endocrinology 155:429–440. CrossRefPubMedGoogle Scholar
  57. Liu X, Zhou Z-W, Wang Z-Q (2016) The DNA damage response molecule MCPH1 in brain development and beyond. Acta Biochim Biophys Sin (Shanghai) 48:678–685. CrossRefGoogle Scholar
  58. Manda K, Kavanagh JN, Buttler D, Prise KM, Hildebrandt G (2014) Low dose effects of ionizing radiation on normal tissue stem cells. Mutat Res Rev Mutat Res 761:1–9. CrossRefGoogle Scholar
  59. Massie CE, Spiteri I, Ross-Adams H et al (2015) HES5 silencing is an early and recurrent change in prostate tumourigenesis. Endocr Relat Cancer 22:131–144. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Matthias P, Yoshida M, Khochbin S (2008) HDAC6 a new cellular stress surveillance factor. Cell Cycle 7:7–10. CrossRefPubMedGoogle Scholar
  61. Memic F, Knoflach V, Sadler R et al (2016) Ascl1 is required for the development of specific neuronal subtypes in the enteric nervous system. J Neurosci 36:4339–4350. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Molchan SE, Lawlor BA, Hill JL et al (1991) The TRH stimulation test in Alzheimer’s disease and major depression: relationship to clinical and CSF measures. Biol Psychiatry 30:567–576. CrossRefPubMedGoogle Scholar
  63. Morel L, Chiang MSR, Higashimori H et al (2017) Molecular and functional properties of regional astrocytes in the adult brain. J Neurosci 37:8706–8717. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Morini J, Babini G, Barbieri S et al (2018) A comparison between X-ray and carbon ion irradiation in human neural stem cells. Radiat Prot Dosim 183:1–5. CrossRefGoogle Scholar
  65. Neradil J, Veselska R (2015) Nestin as a marker of cancer stem cells. Cancer Sci 106:803–811. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Noelanders R, Vleminckx K (2017) How Wnt signaling builds the brain: bridging development and disease. Neuroscientist 23:314–329. CrossRefPubMedGoogle Scholar
  67. Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R (1999) Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J 18:2196–2207. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Ohtsuka T, Sakamoto M, Guillemot F, Kageyama R (2001) Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J Biol Chem 276:30467–30474. CrossRefPubMedGoogle Scholar
  69. O’Leary DD, Sahara S (2008) Genetic regulation of arealization of the neocortex. Curr Opin Neurobiol 18:90–100. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Ostrom QT, Gittleman H, Fulop J et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol 17:1–62. CrossRefGoogle Scholar
  71. Otake M, Schull WJ (1998) Radiation-related brain damage and growth retardation among the prenatally exposed atomic bomb survivors. Int J Radiat Biol 74:159–171. CrossRefPubMedGoogle Scholar
  72. Packer RJ, Meadows AT, Rorke LB, Goldwein JL, D’Angio G (1987) Long-term sequelae of cancer treatment on the central nervous system in childhood. Med Pediatr Oncol 15:241–253CrossRefPubMedGoogle Scholar
  73. Panaliappan TK, Wittmann W, Jidigam VK et al (2018) Sox2 is required for olfactory pit formation and olfactory neurogenesis through BMP restriction and Hes5 upregulation. Development. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Park NI, Guilhamon P, Desai K et al (2017) ASCL1 reorganizes chromatin to direct neuronal fate and suppress tumorigenicity of glioblastoma stem cells. Cell Stem Cell 21:209.e7–224.e7. CrossRefGoogle Scholar
  75. Parrini E, Conti V, Dobyns WB, Guerrini R (2016) Genetic basis of brain malformations. Mol Syndromol 7:220–233. CrossRefPubMedPubMedCentralGoogle Scholar
  76. Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505. CrossRefPubMedPubMedCentralGoogle Scholar
  77. Pinnix CC, Yahalom J, Specht L, Dabaja BS (2018) Radiation in central nervous system leukemia: guidelines from the international lymphoma radiation oncology group. Int J Radiat Oncol Biol Phys 102:53–58. CrossRefPubMedGoogle Scholar
  78. Quintes S, Brinkmann BG, Ebert M et al (2016) Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair. Nat Neurosci 19:1050–1059. CrossRefPubMedPubMedCentralGoogle Scholar
  79. Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Rola R, Raber J, Rizk A et al (2004) Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol 188:316–330. CrossRefPubMedGoogle Scholar
  81. Romaniello R, Arrigoni F, Fry AE et al (2018) Tubulin genes and malformations of cortical development. Eur J Med Genet 61:744–754. CrossRefPubMedGoogle Scholar
  82. Ron E, Modan B, Floro S, Harkedar I, Gurewitz R (1982) Mental function following scalp irradiation during childhood. Am J Epidemiol 116:149–160. CrossRefPubMedGoogle Scholar
  83. Schull WJ, Norton S, Jensh RP (1990) Ionizing radiation and the developing brain. Neurotoxicol Teratol 12:249–260. CrossRefPubMedGoogle Scholar
  84. Seegenschmiedt MH, Micke O, Muecke R, German Cooperative Group on Radiotherapy for Non-malignant Diseases (BSG-BD) (2015) Radiotherapy for non-malignant disorders: state of the art and update of the evidence-based practice guidelines. Br J Radiol 88:20150080. CrossRefGoogle Scholar
  85. Shahsavani M, Pronk RJ, Falk R et al (2018) An in vitro model of lissencephaly: expanding the role of DCX during neurogenesis. Mol Psychiatry 23:1674–1684. CrossRefPubMedGoogle Scholar
  86. Sharma N, Colangelo NW, de Toledo SM, Azzam EI (2016) Diffusible factors secreted by glioblastoma and medulloblastoma cells induce oxidative stress in bystander neural stem progenitors. ASN Neuro. CrossRefPubMedPubMedCentralGoogle Scholar
  87. Shimada M, Matsuzaki F, Kato A, Kobayashi J, Matsumoto T, Komatsu K (2016) Induction of excess centrosomes in neural progenitor cells during the development of radiation-induced microcephaly. PLoS One 11:e0158236. CrossRefPubMedPubMedCentralGoogle Scholar
  88. Shimura T, Sasatani M, Kawai H et al (2017) A comparison of radiation-induced mitochondrial damage between neural progenitor stem cells and differentiated cells. Cell Cycle 16:565–573. CrossRefPubMedPubMedCentralGoogle Scholar
  89. Smith-Bindman R, Lipson J, Marcus R et al (2009) Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 169:2078–2086. CrossRefPubMedPubMedCentralGoogle Scholar
  90. Sokolov M, Neumann R (2013) Lessons learned about human stem cell responses to ionizing radiation exposures: a long road still ahead of us. Int J Mol Sci 14:15695–15723. CrossRefPubMedPubMedCentralGoogle Scholar
  91. Sorrells SF, Paredes MF, Cebrian-Silla A et al (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555:377–381. CrossRefPubMedPubMedCentralGoogle Scholar
  92. Soussain C, Ricard D, Fike JR, Mazeron JJ, Psimaras D, Delattre JY (2009) CNS complications of radiotherapy and chemotherapy. Lancet 374:1639–1651. CrossRefPubMedGoogle Scholar
  93. Spiegler BJ, Bouffet E, Greenberg ML, Rutka JT, Mabbott DJ (2004) Change in neurocognitive functioning after treatment with cranial radiation in childhood. J Clin Oncol 22:706–713. CrossRefPubMedGoogle Scholar
  94. Spix C, Grosche B, Bleher M, Kaatsch P, Scholz-Kreisel P, Blettner M (2017) Background gamma radiation and childhood cancer in Germany: an ecological study. Radiat Environ Biophys 56:127–138. CrossRefPubMedGoogle Scholar
  95. Tallapaka K, Venugopal V, Dalal A, Aggarwal S (2018) Novel RSPO1 mutation causing 46, XX testicular disorder of sex development with palmoplantar keratoderma: a review of literature and expansion of clinical phenotype. Am J Med Genet A 176:1006–1010. CrossRefPubMedGoogle Scholar
  96. Thomas MP, Liu X, Whangbo J et al (2015) Apoptosis triggers specific, rapid, and global mRNA decay with 3′ uridylated intermediates degraded by DIS3L2. Cell Rep 11:1079. CrossRefPubMedPubMedCentralGoogle Scholar
  97. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRefPubMedGoogle Scholar
  98. Tohyama J, Yamamoto T, Hosoki K et al (2011) West syndrome associated with mosaic duplication of FOXG1 in a patient with maternal uniparental disomy of chromosome 14. Am J Med Genet A 155:2584–2588. CrossRefGoogle Scholar
  99. Tzoulaki I, White IMS, Hanson IM (2005) PAX6 mutations: genotype–phenotype correlations. BMC Genet 6:27. CrossRefPubMedPubMedCentralGoogle Scholar
  100. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2013 Report to the General Assembly, Vol II. Scientific Annex B Accessed 03 Mar 2019
  101. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2008 Report to the General Assembly, Scientific Annexes A and B. Accessed 20 Feb 2019
  102. Van Hoecke A, Schoonaert L, Lemmens R et al (2012) EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nat Med 18:1418–1422. CrossRefPubMedGoogle Scholar
  103. Verheyde J, Benotmane MA (2007) Unraveling the fundamental molecular mechanisms of morphological and cognitive defects in the irradiated brain. Brain Res Rev 53:312–320. CrossRefPubMedGoogle Scholar
  104. Waniek A, Hartlage-Rübsamen M, Höfling C et al (2015) Identification of thyrotropin-releasing hormone as hippocampal glutaminyl cyclase substrate in neurons and reactive astrocytes. Biochim Biophys Acta 1852:146–155. CrossRefPubMedGoogle Scholar
  105. Wilson KD, Sun N, Huang M et al (2010) Effects of ionizing radiation on self-renewal and pluripotency of human embryonic stem cells. Cancer Res 70:5539–5548. CrossRefPubMedPubMedCentralGoogle Scholar
  106. Xu C, Inokuma MS, Denham J et al (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974. CrossRefPubMedGoogle Scholar
  107. Yamaguchi M, Kashiwakura I (2013) Role of reactive oxygen species in the radiation response of human hematopoietic stem/progenitor cells. PLoS One 8:1–7. CrossRefGoogle Scholar
  108. Yamoah K, Showalter TN, Ohri N (2015) Radiation therapy intensification for solid tumors: a systematic review of randomized trials. Int J Radiat Oncol Biol Phys 93:737–745. CrossRefPubMedPubMedCentralGoogle Scholar
  109. Yan S, Li P, Wang Y et al (2016) Nestin regulates neural stem cell migration via controlling the cell contractility. Int J Biochem Cell Biol 78:349–360. CrossRefPubMedGoogle Scholar
  110. Yang W, Liu Y, Gao R, Yu H, Sun T (2018) HDAC6 inhibition induces glioma stem cells differentiation and enhances cellular radiation sensitivity through the SHH/Gli1 signaling pathway. Cancer Lett 415:164–176. CrossRefPubMedGoogle Scholar
  111. Yates CM, Harmar AJ, Rosie R et al (1983) Thyrotropin-releasing hormone, luteinizing hormone-releasing hormone and substance P immuno-reactivity in post-mortem brain from cases of Alzheimer-type dementia and Down’s syndrome. Brain Res 258:45–52. CrossRefPubMedGoogle Scholar
  112. Yoon JK, Lee JS (2012) Cellular signaling and biological functions of R-spondins. Cell Signal 24:369–377. CrossRefPubMedGoogle Scholar
  113. Zhang X, Huang CT, Chen J et al (2010) Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell 7:90–100. CrossRefPubMedPubMedCentralGoogle Scholar
  114. Zhao J, Cooper LT, Boyd AW, Bartlett PF (2018) Decreased signalling of EphA4 improves functional performance and motor neuron survival in the SOD1G93A ALS mouse model. Sci Rep 8:11393. CrossRefPubMedPubMedCentralGoogle Scholar
  115. Zhou F, Gou S, Xiong J, Wu H, Wang C, Liu T (2014) Oncogenicity of LHX2 in pancreatic ductal adenocarcinoma. Mol Biol Rep 41:8163–8167. CrossRefPubMedGoogle Scholar
  116. Zou Y, Zhang N, Ellerby LM et al (2012) Responses of human embryonic stem cells and their differentiated progeny to ionizing radiation. Biochem Biophys Res Commun 426:100–105. CrossRefPubMedPubMedCentralGoogle Scholar
  117. Zou Y, Ouyang Q, Wei W, Yang S, Zhang Y, Yang W (2018) FAT10 promotes the invasion and migration of breast cancer cell through stabilization of ZEB2. Biochem Biophys Res Commun 506:563–570. CrossRefPubMedGoogle Scholar
  118. Zweier C, Thiel CT, Dufke A et al (2005) Clinical and mutational spectrum of Mowat–Wilson syndrome. Eur J Med Genet 48:97–111. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Annemarie Klatt
    • 1
  • Eugenia Salzmann
    • 1
  • Lisanne-Josephin Schneider
    • 1
  • Alexander Reifschneider
    • 1
  • Milena Korneck
    • 1
  • Patrick Hermle
    • 1
  • Alexander Bürkle
    • 2
  • Dieter Stoll
    • 1
  • Suzanne Kadereit
    • 1
    Email author
  1. 1.Department of Life SciencesAlbstadt-Sigmaringen University of Applied SciencesSigmaringenGermany
  2. 2.Department of BiologyUniversity of KonstanzKonstanzGermany

Personalised recommendations