Advertisement

Archives of Toxicology

, Volume 93, Issue 7, pp 2065–2086 | Cite as

Neurotoxicity of Micrurus lemniscatus lemniscatus (South American coralsnake) venom in vertebrate neuromuscular preparations in vitro and neutralization by antivenom

  • Rafael S. Floriano
  • Raphael Schezaro-Ramos
  • Nelson J. SilvaJr.
  • Fábio Bucaretchi
  • Edward G. Rowan
  • Stephen HyslopEmail author
Biologics

Abstract

We investigated the effect of South American coralsnake (Micrurus lemniscatus lemniscatus) venom on neurotransmission in vertebrate nerve–muscle preparations in vitro. The venom (0.1–30 µg/ml) showed calcium-dependent PLA2 activity and caused irreversible neuromuscular blockade in chick biventer cervicis (BC) and mouse phrenic nerve–diaphragm (PND) preparations. In BC preparations, contractures to exogenous acetylcholine and carbachol (CCh), but not KCl, were abolished by venom concentrations ≥ 0.3 µg/ml; in PND preparations, the amplitude of the tetanic response was progressively attenuated, but with little tetanic fade. In low Ca2+ physiological solution, venom (10 µg/ml) caused neuromuscular blockade in PND preparations within ~ 10 min that was reversible by washing; the addition of Ca2+ immediately after the blockade temporarily restored the twitch responses, but did not prevent the progression to irreversible blockade. Venom (10 µg/ml) did not depolarize diaphragm muscle, prevent depolarization by CCh, or cause muscle contracture or histological damage. Venom (3 µg/ml) had a biphasic effect on the frequency of miniature end-plate potentials, but did not affect their amplitude; there was a progressive decrease in the amplitude of evoked end-plate potentials. The amplitude of compound action potentials in mouse sciatic nerve was unaffected by venom (10 µg/ml). Pre-incubation of venom with coralsnake antivenom (Instituto Butantan) at the recommended antivenom:venom ratio did not neutralize the neuromuscular blockade in PND preparations, but total neutralization was achieved with a tenfold greater volume of antivenom. The addition of antivenom after 50% and 80% blockade restored the twitch responses. These results show that M. lemniscatus lemniscatus venom causes potent, irreversible neuromuscular blockade, without myonecrosis. This blockade is apparently mediated by pre- and postsynaptic neurotoxins and can be reversed by coralsnake antivenom.

Keywords

Antivenom Coralsnake venom Neuromuscular blockade α-Neurotoxin Neutralization Phospholipase A2 (β-neurotoxin) 

Notes

Acknowledgements

RSF was supported by a post-doctoral fellowship from Fundação de Amparo à Pesquisa do Estado de São Paulo—Brasil (FAPESP, Grant No. 2014/24409-8) and RSR was supported by a PhD studentship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, Grant No. 02-P-4572/2018, Finance code 001). NJS and SH are supported by research fellowships from Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brasil (CNPq, Grant Nos. 309320/2016-0 and 310547/2014-8, respectively).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest with this work.

Ethical approval

The relevant international, national, and/or institutional guidelines for the care and use of animals were followed in this work, as indicated in the section ‘animals’ of the methods.

Supplementary material

204_2019_2476_MOESM1_ESM.docx (10.6 mb)
Supplementary material 1 (DOCX 10880 kb)

References

  1. Abreu VA, Leite GB, Borja-Oliveira C, Hyslop S, Furtado MF, Rodrigues-Simioni L (2008) Neurotoxicity of Micrurus altirostris (Uruguayan coral snake) venom and its neutralization by commercial coral snake antivenom and specific antiserum raised in rabbits. Clin Toxicol (Phila) 46:519–527CrossRefGoogle Scholar
  2. Aird SD, Silva NJ Jr (1991) Comparative enzymatic composition of Brazilian coral snake (Micrurus) venoms. Comp Biochem Physiol 99B:287–294Google Scholar
  3. Aird SD, Silva NJ Jr, Qiu L, Villar-Briones A, Saddi VA, de Campos Pires, Telles M, Grau ML, Mikheyev AS (2017) Coralsnake venomics: analyses of venom gland transcriptomes and proteomes of six Brazilian taxa. Toxins (Basel) 9:187CrossRefGoogle Scholar
  4. Anwar M, Bernstein JN (2017) North American coral snake envenomation. In: Gopalakrishnakone P, Vogel C-W, Seifert SA, Tambourgi DV (eds) Clinical toxinology. Springer Science and Business Media, Dordrecht. https://link.springer.com/referenceworkentry/10.1007/978-94-007-6288-6_75-1. Accessed 15 Nov 2017
  5. Brazil V, Brazil Filho V (1933) Do envenenamento elapíneo em confronto com o chóque anaphylactico. Bol Inst Vital Brazil 15:1–49Google Scholar
  6. Bucaretchi F, Hyslop S, Vieira RJ, Toledo AS, Madureira PR, Capitani EM (2006) Bites by coral snakes (Micrurus spp.) in Campinas, state of São Paulo, southeastern Brazil. Rev Inst Med Trop São Paulo 48:141–145CrossRefGoogle Scholar
  7. Bucaretchi F, Capitani EM, Hyslop S (2016a) Aspectos clínicos do envenenamento causado por cobras-corais no Brasil. In: Silva NJ Jr (ed) As cobras-corais do Brasil: biologia, taxonomia, venenos e envenenamentos. Editora da Pontifícia Universidade Católica de Goiás (PUC-Goiás), Goiânia, pp 346–379Google Scholar
  8. Bucaretchi F, Capitani EM, Vieira RJ, Rodrigues CK, Zannin M, Silva NJ Jr, Casais-e-Silva LL, Hyslop S (2016b) Coral snake bites (Micrurus spp.) in Brazil: a review of literature reports. Clin Toxicol 54:222–234CrossRefGoogle Scholar
  9. Camargo TM, de Roodt AR, Cruz-Höfling MA, Rodrigues-Simioni L (2011) The neuromuscular activity of Micrurus pyrrhocryptus venom and its neutralization by commercial and specific coral snake antivenoms. J Venom Res 2:24–31Google Scholar
  10. Campbell JA, Lamar WW (2004) Venomous reptiles of the Western Hemisphere, 2 Vol. Comstock Publishing Associates/Cornell University Press, IthacaGoogle Scholar
  11. Carbajal-Saucedo A, Floriano RS, Dal Belo CA, Olvera-Rodríguez A, Alagón A, Rodrigues-Simioni L (2014) Neuromuscular activity of Micrurus laticollaris (Squamata: Elapidae) venom in vitro. Toxins (Basel) 6:359–370CrossRefGoogle Scholar
  12. Cardoso DF, Yamaguchi IK, Moura da Silva AM (2009) Produção de soros antitoxinas e perspectivas de modernização por técnicas de biologia molecular. In: Cardoso JLC, França FOS, Wen FH, Málaque CMS, Haddad V Jr (eds) Animais peçonhentos do Brasil: biologia, clínica e terapêutica dos acidentes. Sarvier/FAPESP, São Paulo, pp 419–431Google Scholar
  13. Carregari VC, Floriano RS, Rodrigues-Simioni L, Winck FV, Baldasso PA, Ponce-Soto LA, Marangoni S (2013) Biochemical, pharmacological, and structural characterization of new basic PLA2 Bbil-TX from Bothriopsis bilineata snake venom. Biomed Res Int 2013:612649.  https://doi.org/10.1155/2013/612649 Google Scholar
  14. Carvalho ND, Garcia RCT, Ferreira AK, Batista DR, Cassola AC, Maria D, Lebrun I, Carneiro SM, Afeche SC, Marcourakis T, Sandoval MRL (2014) Neurotoxicity of coral snake phospholipases A2 in cultured rat hippocampal neurons. Brain Res Bull 1552:1–16CrossRefGoogle Scholar
  15. Casais-e-Silva LL, Teixeira CFP, Lebrun I, Lomonte B, Alape-Girón A, Gutiérrez JM (2016) Lemnitoxin, the major component of Micrurus lemniscatus coral snake venom, is a myotoxin and pro-inflammatory phospholipase A2. Toxicol Lett 257:60–71CrossRefGoogle Scholar
  16. Cecchini AL, Marcussi S, Silveira LB, Borja-Oliveira CR, Rodrigues-Simioni L, Amara S, Stábeli RG, Giglio JR, Arantes EC, Soares AM (2005) Biological and enzymatic activities of Micrurus sp. (coral) snake venoms. Comp Biochem Physiol A 140:125–134CrossRefGoogle Scholar
  17. Chang CC, Su MJ (1975) Further evidence that extrinsic acetylcholine acts preferentially on extrajunctional receptors in the chick biventer cervicis muscle. Eur J Pharmacol 33:337–344CrossRefGoogle Scholar
  18. Chang CC, Tang SS (1974) Differentiation between intrinsic and extrinsic acetylcholine receptors of the chick biventer cervicis muscle. Naunyn-Schmeideberg’s Arch Pharmacol 282:379–388CrossRefGoogle Scholar
  19. Chang CC, Lee DJ, Eaker D, Fohlman J (1977) The presynaptic neuromuscular blocking action of taipoxin. A comparison with β-bungarotoxin and crotoxin. Toxicon 15:571–576CrossRefGoogle Scholar
  20. Ciscotto PHC, Rates B, Silva DAF, Richardson M, Silva LP, Andrade H, Donato MF, Cotta GA, Maria WS, Rodrigues RJ, Sanchez E, de Lima ME, Pimenta AMC (2011) Venomic analysis and evaluation of antivenom cross-reactivity of South American Micrurus species. J Proteom 74:1810–1825CrossRefGoogle Scholar
  21. Coelho LK, Silva E, Espositto C, Zanin M (1992) Clinical features and treatment of Elapidae bites: report of three cases. Human Exp Toxicol 11:135–137CrossRefGoogle Scholar
  22. Corbett B, Clark RF (2017) North American snake envenomation. Emerg Med Clin N Am 35:339–354CrossRefGoogle Scholar
  23. da Silva IM, Bernal JC, Gonçalves Bisneto PF, Tavares AM, de Moura VM, Monteiro-Júnior CS, Raad R, Bernarde PS, Sachett JAG, Monteiro WM (2018) Snakebite by Micrurus averyi (Schmidt, 1939) in the Brazilian Amazon basin: case report. Toxicon 141:51–54CrossRefGoogle Scholar
  24. Dal Belo CA, Leite GB, Toyama MH, Marangoni S, Corrado AP, Fontana MD, Southan A, Rowan EG, Hyslop S, Rodrigues-Simioni L (2005) Pharmacological and structural characterization of a novel phospholipase A2 from Micrurus dumerilii carinicauda venom. Toxicon 46:736–750CrossRefGoogle Scholar
  25. Dempster J (1988) Computer analysis of electrophysiological signals. In: Frazer PJ (ed) Microcomputers in physiology: a practical approach. IRL Press, Oxford, pp 51–93Google Scholar
  26. Díaz-Oreiro C, Gutiérrez JM (1997) Chemical modification of histidine and lysine residues of myotoxic phospholipases A2 isolated from Bothrops asper and Bothrops godmani snake venoms: effects on enzymatic and pharmacological properties. Toxicon 35:241–252CrossRefGoogle Scholar
  27. Floriano RS, Carregari VC, Abreu VA, Kenzo-Kagawa B, Ponce-Soto LA, Cruz-Höfling MA, Hyslop S, Marangoni S, Rodrigues-Simioni L (2013) Pharmacological study of a new Asp49 phospholipase A2 (Bbil-TX) isolated from Bothriopsis bilineata smargadina (forest viper) venom in vertebrate neuromuscular preparations. Toxicon 69:191–199CrossRefGoogle Scholar
  28. Floriano RS, Rocha T, Carregari VC, Marangoni S, Cruz-Höfling MA, Hyslop S, Rodrigues-Simioni L, Rowan EG (2015) The neuromuscular activity of Bothriopsis bilineata smaragdina (forest viper) venom and its toxin Bbil-TX (Asp49 phospholipase A2) on isolated mouse nerve-muscle preparations. Toxicon 96:24–37CrossRefGoogle Scholar
  29. Goularte FC, Cruz-Höfling MA, Cogo JC, Gutiérrez JM, Rodrigues-Simioni L (1995) The ability of specific antivenom and low temperature to inhibit the myotoxicity and neuromuscular block induced by Micrurus nigrocinctus venom. Toxicon 33:679–689CrossRefGoogle Scholar
  30. Goularte FC, Cruz-Höfling MA, Corrado AP, Rodrigues-Simioni L (1999) Electrophysiological and ultrastructural analysis of the neuromuscular blockade and myotoxicity induced by the Micrurus nigrocinctus snake venom. Acta Physiol Pharmacol Ther Latinoam 49:290–296Google Scholar
  31. Gutiérrez JM, Chaves F, Rojas E, Bolaños R (1980) Efectos locales inducidos por el veneno de la serpiente coral Micrurus nigrocinctus en ratón blanco. Toxicon 18:633–639CrossRefGoogle Scholar
  32. Gutiérrez JM, Lomonte B, Portilla E, Cerdas L, Rojas E (1983) Local effects induced by coral snake venoms: evidence of myonecrosis after experimental inoculations of venoms from five species. Toxicon 21:777–783CrossRefGoogle Scholar
  33. Gutiérrez JM, Rojas G, Silva NJ Jr, Núñez J (1992) Experimental myonecrosis induced by the venoms of South American Micrurus (coral snakes). Toxicon 30:1299–1302CrossRefGoogle Scholar
  34. Gutiérrez JM, Lomonte B, Aird S, Silva NJ Jr (2016) Mecanismo de ação dos venenos das cobras-corais. In: Silva NJ Jr (ed) As cobras-corais do Brasil: biologia, taxonomia, venenos e envenenamentos. Editora da Pontifícia Universidade Católica de Goiás (PUC-Goiás), Goiânia, pp 303–329Google Scholar
  35. Gutiérrez JM, Solano G, Pla D, Herrera M, Segura A, Vargas M, Villalta M, Sánchez A, Sanz L, Lomonte B, León G, Calvete JJ (2017) Preclinical evaluation of the efficacy of antivenoms for snakebite envenoming: state-of-the-art and challenges ahead. Toxins 9:163CrossRefGoogle Scholar
  36. Harvey AL, Barfarz A, Thompson E, Faiz A, Preston S, Harris JB (1994) Screening of snake venoms for neurotoxic and myotoxic effects using simple in vitro preparations from rodents and chicks. Toxicon 32:257–265CrossRefGoogle Scholar
  37. Herrera M, Collaço RCO, Villalta M, Segura Á, Vargas M, Wright CE, Paiva OK, Matainaho T, Jensen SD, León G, Williams DJ, Rodrigues-Simioni L, Gutiérrez JM (2016) Neutralization of the neuromuscular inhibition of venom and taipoxin from the taipan (Oxyuranus scutellatus) by F(ab’)2 and whole IgG antivenoms. Toxicol Lett 241:175–183CrossRefGoogle Scholar
  38. Higashi HG, Guidolin R, Caricati CP, Fernandes I, Marcelino JR, Morais JF, Yamagushi IK, Stephano MA, Dias-da-Silva W, Takehara HA (1995) Antigenic cross-reactivity among components of Brazilian Elapidae snake venoms. Braz J Med Biol Res 28:767–771Google Scholar
  39. Kitchens CS, Van Mierop LHS (1987) Envenomation by the eastern coral snake (Micrurus fulvius fulvius). A study of 39 victims. J Am Med Assoc 258:1615–1618CrossRefGoogle Scholar
  40. Lomonte B, Angulo Y, Calderón L (2003) An overview of lysine-49 phospholipase A2 myotoxins from crotalid snake venoms and their structural determinants of myotoxic action. Toxicon 42:885–901CrossRefGoogle Scholar
  41. Lomonte B, Rey-Suárez P, Fernández J, Sasa M, Pla D, Vargas N, Bénard-Valle M, Sanz L, Corrêa-Netto C, Alape-Girón A, Gutiérrez JM, Calvete JJ (2016) Venoms of Micrurus coral snakes: evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon 122:7–25CrossRefGoogle Scholar
  42. Manock SR, Suarez G, Graham D, Avila-Agüero ML, Warrell DA (2008) Neurotoxic envenoming by South American coral snake (Micrurus lemniscatus helleri): case report from eastern Ecuador and review. Trans R Soc Trop Med Hyg 102:1127–1132CrossRefGoogle Scholar
  43. McLachlan EM, Martin AR (1981) Non-linear summation of end-plate potentials in the frog and mouse. J Physiol 311:307–324CrossRefGoogle Scholar
  44. Melgarejo AR, Puorto G, Buononato MA, Silva NJ Jr (2016) Cobras corais de interesse médico no Brazil. In: Silva NJ Jr (ed) As cobras-corais do Brasil: biologia, taxonomia, venenos e envenenamentos. Editora da Pontifícia Universidade Católica de Goiás (PUC-Goiás), Goiânia, pp 331–345Google Scholar
  45. Nishioka SA, Silveira PV, Menezes LB (1993) Coral snake bite and severe local pain. Ann Trop Med Parasitol 87:429–431CrossRefGoogle Scholar
  46. Oliveira DA, Harasawa C, Seibert CS, Casais e Silva LL, Pimenta DC, Lebrun I, Sandoval MRL (2008) Phospholipases A2 isolated from Micrurus lemniscatus coral snake venom: behavioral, electroencephalographic, and neuropathological aspects. Brain Res Bull 75:629–639CrossRefGoogle Scholar
  47. Pungerčar J, Križaj I (2007) Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2. Toxicon 50:871–892CrossRefGoogle Scholar
  48. Ramos HR, Vassão RC, de Roodt AR, Santos e Silva EC, Mirtschin P, Ho PL, Spencer PJ (2017) Cross neutralization of coral snake venoms by commercial Australian snake antivenoms. Clin Toxicol 55:33–39CrossRefGoogle Scholar
  49. Renjifo C, Smith EN, Hodgson WC, Renjifo JM, Sanchez A, Acosta R, Maldonaldo JH, Riveros A (2012) Neuromuscular activity of the venoms of the Colombian coral snakes Micrurus dissoleucus and Micrurus mipartitus: an evolutionary perspective. Toxicon 59:132–142CrossRefGoogle Scholar
  50. Ribeiro LA, Jorge MT (1986) Acidentes por serpentes do gênero Micrurus (“coral”): análise de sete casos. Rev Soc Bras Med Trop 19(Suppl 1):28 (abstract) Google Scholar
  51. Risk JY, Cardoso JLC, Sueiro LR, Almeida-Santos SM (2016) Acidentes com cobras-corais e o Instituto Butantan. In: Silva NJ Jr (ed) As cobras-corais do Brasil: biologia, taxonomia, venenos e envenenamentos. Editora da Pontifícia Universidade Católica de Goiás (PUC-Goiás), Goiânia, pp 383–415Google Scholar
  52. Rodrigo LC, Marques-da-Silva E, Moura-Leite JC, Siqueira DED, Carvalho PP, Silva DCZ (2016) Envenomation by Brazilian coralsnake, Micrurus decoratus (Jan, 1858) (Serpentes: Elapidae): a case report. In: Annals of the International Symposium on Coralsnakes, Pontifícia Universidade Católica de Goiás (PUC-Goiás), 17–21 October, 2016, Goiânia, GO, Brazil, pp 88–89. http://sites.pucgoias.edu.br/eventos/isc/wp-content/uploads/sites/34/2016/10/anais_miolo-1.pdf. Accessed 9 Dec 2016
  53. Rosenfeld G (1971) Symptomatology, pathology and treatment of snake bites in South America. In: Bücherl W, Buckley EE (eds) Venomous animals and their venoms, vol 2. Academic Press, New York, pp 345–384CrossRefGoogle Scholar
  54. Rossetto O, Montecucco C (2008) Presynaptic neurotoxins with enzymatic activities. Handb Exp Pharmacol 184:129–170CrossRefGoogle Scholar
  55. Roze JA (1996) Coral snakes of the Americas: biology, identification and venoms. Krieger Publishing Co., MalabarGoogle Scholar
  56. Santos GGL, Casais e Silva LL, Soares MBP, Villarreal CF (2012) Antinociceptive properties of Micrurus lemniscatus venom. Toxicon 60:1005–1012CrossRefGoogle Scholar
  57. Serafim FG, Reali M, Cruz-Höfling MA, Fontana MD (2002) Action of Micrurus dumerilii carinicauda coral snake venom on the mammalian neuromuscular junction. Toxicon 40:167–174CrossRefGoogle Scholar
  58. Silva DC, Medeiros WAA, Batista IFC, Pimenta DC, Lebrun I, Abdalla FMF, Sandoval MRL (2011) Characterization of a new muscarinic toxin from the venom of the Brazilian coral snake Micrurus lemniscatus in rat hippocampus. Life Sci 89:931–938CrossRefGoogle Scholar
  59. Silva NJ Jr, Buononato MA, Feitosa DT (2016a) As cobras corais do Novo Mundo. In: Silva NJ Jr (ed) As cobras-corais do Brasil: biologia, taxonomia, venenos e envenenamentos. Editora da Pontifícia Universidade Católica de Goiás (PUC-Goiás), Goiânia, pp 47–78Google Scholar
  60. Silva NJ Jr, Pires MG, Feitosa DT (2016b) Diversidade das cobras-corais do Brasil. In: Silva NJ Jr (ed) As cobras-corais do Brasil: biologia, taxonomia, venenos e envenenamentos. Editora da Pontifícia Universidade Católica de Goiás (PUC-Goiás), Goiânia, pp 79–167Google Scholar
  61. Silva A, Hodgson WC, Isbister GK (2017) Antivenom for neuromuscular paralysis resulting from snake envenoming. Toxins 9:143CrossRefGoogle Scholar
  62. Soares AM, Giglio JR (2003) Chemical modifications of phospholipases A2 from snake venoms: effects on catalytic and pharmacological properties. Toxicon 42:855–868CrossRefGoogle Scholar
  63. Souza GJ, Nahar J, Santos Ramos T (2016) Envenomation by Micrurus corallinus (coralsnake) attended in Teresópolis Clinical Hospital Constantine Ottaviano-RJ: case report. In: Annals of the International Symposium on Coralsnakes, Pontifícia Universidade Católica de Goiás (PUC-Goiás), 17–21 October, 2016, Goiânia, GO, Brazil, p 90. http://sites.pucgoias.edu.br/eventos/isc/wp-content/uploads/sites/34/2016/10/anais_miolo-1.pdf. Accessed 9 Dec 2016
  64. Šribar J, Oberčkal J, Križaj I (2014) Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2: an update. Toxicon 89:9–16CrossRefGoogle Scholar
  65. Starace F (2013) Serpents et amphisbènes de Guyane Française. Ibis Rouge Éditions, MatouryGoogle Scholar
  66. Strauch MA, Souza GJ, Pereira JN, Ramos TDS, Cesar MO, Tomaz MA, Monteiro-Machado M, Patrão-Neto FC, Melo PA (2018) True or false coral snake: is it worth the risk? A Micrurus corallinus case report. J Venom Anim Toxins Incl Trop Dis 24:10CrossRefGoogle Scholar
  67. Tanaka GD, Furtado MFD, Portaro FCV, Sant’Anna OA, Tambourgi DV (2010) Diversity of Micrurus snake species related to their venom toxic effects and the prospective of antivenom neutralization. PLoS Negl Trop Dis 4:e622CrossRefGoogle Scholar
  68. Tanaka GD, Sant’Anna OA, Marcelino JR, Luz ACL, Rocha MMT, Tambourgi DV (2016) Micrurus snake species: venom immunogenicity, antiserum cross-reactivity and neutralization potential. Toxicon 117:59–68CrossRefGoogle Scholar
  69. Vergara I, Pedraza-Escalona M, Paniagua D, Restano-Cassulini R, Zamudio F, Batista CVF, Possani LD, Alagón A (2014) Eastern coral snake Micrurus fulvius venom toxicity in mice is mainly determined by neurotoxic phospholipases A2. J Proteom 105:295–306CrossRefGoogle Scholar
  70. Vital Brazil O (1965) Ação neuromuscular da peçonha de Micrurus. O Hosp 68:909–950Google Scholar
  71. Vital Brazil O (1987) Coral snake venoms: mode of action and pathophysiology of experimental envenomation. Rev Inst Med Trop São Paulo 29:119–126CrossRefGoogle Scholar
  72. Vital Brazil O, Fontana MD (1983/1984) Ações pré-juncionais e pós-juncionais da peçonha da cobra coral Micrurus corallinus na junção neuromuscular. Mem Inst Butantan 47/48:13–26Google Scholar
  73. Vital Brazil O, Vieira RJ (1996) Neostigmine in the treatment of snake accidents caused by Micrurus frontalis: report of two cases. Rev Inst Med Trop São Paulo 29:119–126CrossRefGoogle Scholar
  74. Vital Brazil O, Fontana MD, Pellegrini Filho A (1976/1977) Physiopathologie e thérapeutique de l’envenamention expérimentale causée par le venin de Micrurus frontalis. Mem Inst Butantan 40/41:221–240Google Scholar
  75. Vital Brazil O, Fontana MD, Heluany NF, Laure CJ (1995) Mode of action of the coral snake Micrurus spixii venom at the neuromuscular junction. J Nat Toxins 4:19–33Google Scholar
  76. Warrell DA (2004) Epidemiology, clinical features and management of snake bites in Central and South America. In: Campbell J, Lamar WW (eds) Venomous reptiles of the Western Hemisphere. Cornell University Press, Ithaca, pp 709–761Google Scholar
  77. Weis R, McIsaac RJ (1971) Cardiovascular and muscular effects of venom from coral snake, Micrurus fulvius. Toxicon 9:219–228CrossRefGoogle Scholar
  78. Yang DC, Dobson J, Cochran C, Dashevsky D, Arbuckle K, Benard M, Boyer L, Alagón A, Hendrikx I, Hodgson WC, Fry BG (2017) The bold and the beautiful: a neurotoxicity comparison of New World coral snakes in the Micruroides and Micrurus genera and relative neutralization by antivenom. Neurotox Res 32:487–495CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Farmacologia, Faculdade de Ciências MédicasUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
  2. 2.Programa de Pós-Graduação em Ciências Ambientais e Saúde, Escola de Ciências Médicas, Farmacêuticas e BiomédicasPontifícia Universidade Católica de Goiás (PUC-GO)GoiâniaBrazil
  3. 3.Departamento de Pediatria e Centro de Informação e Assistência Toxicológica de Campinas (CIATox), Faculdade de Ciências MédicasUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
  4. 4.Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK

Personalised recommendations