Advertisement

PGC-1β modulates statin-associated myotoxicity in mice

  • François Singh
  • Joffrey Zoll
  • Urs Duthaler
  • Anne-Laure Charles
  • Miljenko V. Panajatovic
  • Gilles Laverny
  • Thomas G. McWilliams
  • Daniel Metzger
  • Bernard Geny
  • Stephan Krähenbühl
  • Jamal Bouitbir
Organ Toxicity and Mechanisms

Abstract

Statins inhibit cholesterol biosynthesis and lower serum LDL-cholesterol levels. Statins are generally well tolerated, but can be associated with potentially life-threatening myopathy of unknown mechanism. We have shown previously that statins impair PGC-1β expression in human and rat skeletal muscle, suggesting that PGC-1β may play a role in statin-induced myopathy. PGC-1β is a transcriptional co-regulator controlling the expression of important genes in mitochondrial biogenesis, antioxidative capacity and energy metabolism. The principle aim of the current study was to investigate the interaction between atorvastatin and PGC-1β in more detail. We therefore treated wild-type mice and mice with selective skeletal muscle knockout of PGC-1β (PGC-1β(i)skm−/− mice) with oral atorvastatin (5 mg/kg/day) for 2 weeks. At the end of treatment, we determined body parameters, muscle function, structure, and composition as well as the function of muscle mitochondria, mitochondrial biogenesis and activation of apoptotic pathways. In wild-type mice, atorvastatin selectively impaired mitochondrial function in glycolytic muscle and caused a conversion of oxidative type IIA to glycolytic type IIB myofibers. Conversely, in oxidative muscle of wild-type mice, atorvastatin enhanced mitochondrial function via activation of mitochondrial biogenesis pathways and decreased apoptosis. In PGC-1β(i)skm−/− mice, atorvastatin induced a switch towards glycolytic fibers, caused mitochondrial dysfunction, increased mitochondrial ROS production, impaired mitochondrial proliferation and induced apoptosis in both glycolytic and oxidative skeletal muscle. Our work reveals that atorvastatin mainly affects glycolytic muscle in wild-type mice and demonstrates the importance of PGC-1β for oxidative muscle integrity during long-term exposure to a myotoxic agent.

Keywords

Atorvastatin Myopathy PGC-1β Apoptosis Reactive oxygen species (ROS) Mitochondrial proliferation 

Abbreviations

CK

Creatine kinase

FRL

Free radical leak

HMG-CoA

3-Hydroxy-3-methylglutaryl-coenzyme A

MHC

Myosin heavy chain

mtDNA

Mitochondrial DNA

NADH

Nicotinamide adenine dinucleotide (reduced)

OXPHOS

Oxidative phosphorylation

PGC

Peroxisome proliferator-activated receptor-γ co-activator

ROS

Reactive oxygen species

Notes

Acknowledgements

We thank the staff of the mouse facilities from Institut de Génétique et de Biologie Moléculaire et Cellulaire and Institut Clinique de la Souris from Illkirch in France. This work was supported by funds from the Centre National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale, the Collège de France, the Université de Strasbourg, the Agence Nationale de la Recherche (05-PCOD-032) and by French state funds through the Agence Nationale de la Recherche ANR-10-LABX-0030-INRT under the frame programme Investissements d’Avenir labelled ANR-10-IDEX-0002-02. G.L. was supported by the Agence Nationale de la Recherche (2010BLAN1108-01). SK was supported by a grant of the Swiss National Science Foundation (31003A_156270).

Author contributions

FS, JZ, DM, BG, SK and BJ conceived and designed study, and FS, UD, ALC, MP, GL, and BJ performed experiments and analyzed data. FS, DM, TMW, BG, SK, and JB wrote the manuscript.

Compliance with ethical standards

Ethical standards

Ethical approval: All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All animal experiments were approved by the Ethics Committee Com’Eth (Comité d’Ethique pour l’Expérimentation Animale, Strasbourg, France), and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

204_2018_2369_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 KB)

References

  1. Alfirevic A, Neely D, Armitage J et al (2014) Phenotype standardization for statin-induced myotoxicity. Clin Pharmacol Ther 96:470–476.  https://doi.org/10.1038/clpt.2014.121 CrossRefPubMedCentralPubMedGoogle Scholar
  2. Anderson EJ, Neufer PD (2006) Type II skeletal myofibers possess unique properties that potentiate mitochondrial H(2)O(2) generation. Am J Physiol Cell Physiol 290:C844–C851.  https://doi.org/10.1152/ajpcell.00402.2005 CrossRefGoogle Scholar
  3. Arany Z, Lebrasseur N, Morris C et al (2007) The transcriptional coactivator PGC-1Beta drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab 5:35–46.  https://doi.org/10.1016/j.cmet.2006.12.003 CrossRefGoogle Scholar
  4. Banach M, Serban C, Sahebkar A et al (2015) Effects of coenzyme Q10 on statin-induced myopathy: a meta-analysis of randomized controlled trials. Mayo Clin Proc 90:24–34.  https://doi.org/10.1016/j.mayocp.2014.08.021 CrossRefGoogle Scholar
  5. Björkhem-Bergman L, Lindh JD, Bergman P (2011) What is a relevant statin concentration in cell experiments claiming pleiotropic effects? Br J Clin Pharmacol 72:164–165.  https://doi.org/10.1111/j.1365-2125.2011.03907.x CrossRefPubMedCentralPubMedGoogle Scholar
  6. Bloemberg D, Quadrilatero J (2012) Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS One 7:.  https://doi.org/10.1371/journal.pone.0035273 CrossRefPubMedGoogle Scholar
  7. Bonifacio A, Sanvee GM, Bouitbir J, Krähenbühl S (2015) The AKT/mTOR signaling pathway plays a key role in statin-induced myotoxicity. Biochim Biophys Acta Mol Cell Res 1853:1841–1849.  https://doi.org/10.1016/j.bbamcr.2015.04.010 CrossRefGoogle Scholar
  8. Bonifacio A, Mullen PJ, Mityko IS et al (2016) Simvastatin induces mitochondrial dysfunction and increased atrogin-1 expression in H9c2 cardiomyocytes and mice in vivo. Arch Toxicol 90:203–215.  https://doi.org/10.1007/s00204-014-1378-4 CrossRefGoogle Scholar
  9. Bouitbir J, Charles AL, Echaniz-Laguna A et al (2012) Opposite effects of statins on mitochondria of cardiac and skeletal muscles: a “mitohormesis” mechanism involving reactive oxygen species and PGC-1. Eur Heart J 33:1397–1407.  https://doi.org/10.1093/eurheartj/ehr224 CrossRefGoogle Scholar
  10. Bouitbir J, Singh F, Charles A-L et al (2016) Statins trigger mitochondrial reactive oxygen species-induced apoptosis in glycolytic skeletal muscle. Antioxid Redox Signal 24:84–98.  https://doi.org/10.1089/ars.2014.6190 CrossRefGoogle Scholar
  11. Brault JJ, Jespersen JG, Goldberg AL (2010) Peroxisome proliferator-activated receptor gamma coactivator 1alpha or 1beta overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy. J Biol Chem 285:19460–19471.  https://doi.org/10.1074/jbc.M110.113092 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Chang JH, Ly J, Plise E et al (2014) Differential effects of rifampin and ketoconazole on the blood and liver concentration of atorvastatin in wild-type and Cyp3a and Oatp1a/b knockout mice. Drug Metab Dispos 42:1067–1073.  https://doi.org/10.1124/dmd.114.057968 CrossRefGoogle Scholar
  13. Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L et al (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376:1670–1681.  https://doi.org/10.1016/S0140-6736(10)61350-5 CrossRefGoogle Scholar
  14. Cholesterol Treatment Trialists’ (CTT) Collaborators, Mihaylova B, Emberson J et al (2012) The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 380:581–590.  https://doi.org/10.1016/S0140-6736(12)60367-5 CrossRefGoogle Scholar
  15. Correia JC, Ferreira DMS, Ruas JL (2015) Intercellular: local and systemic actions of skeletal muscle PGC-1 s. Trends Endocrinol Metab.  https://doi.org/10.1016/j.tem.2015.03.010 CrossRefGoogle Scholar
  16. de Chaumont F, Dallongeville S, Chenouard N et al (2012) Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 9:690–696.  https://doi.org/10.1038/nmeth.2075 CrossRefGoogle Scholar
  17. Gali Ramamoorthy T, Laverny G, Schlagowski A-I et al (2015) The transcriptional coregulator PGC-1β controls mitochondrial function and anti-oxidant defence in skeletal muscles. Nat Commun 6:10210.  https://doi.org/10.1038/ncomms10210 CrossRefPubMedCentralPubMedGoogle Scholar
  18. Gariani K, Menzies KJ, Ryu D et al (2015) Eliciting the mitochondrial unfolded protein response via NAD + repletion reverses fatty liver disease. Hepatology.  https://doi.org/10.1002/hep.28245 CrossRefPubMedCentralPubMedGoogle Scholar
  19. Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41:1837–1845.  https://doi.org/10.1016/j.biocel.2009.03.013 CrossRefGoogle Scholar
  20. Hanai JI, Cao P, Tanksale P et al (2007) The muscle-specific ubiquitin ligase atrogin-1/MAFbx mediates statin-induced muscle toxicity. J Clin Investig 117:3940–3951.  https://doi.org/10.1172/JCI32741 CrossRefGoogle Scholar
  21. Handschin C, Spiegelman BM (2011) PGC-1 coactivators and the regulation of skeletal muscle fiber-type determination. Cell Metab 13:351.  https://doi.org/10.1016/j.cmet.2011.03.008 CrossRefGoogle Scholar
  22. Handschin C, Chin S, Li P et al (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1 muscle-specific knock-out animals. J Biol Chem 282:30014–30021.  https://doi.org/10.1074/jbc.M704817200 CrossRefGoogle Scholar
  23. Higgins JW, Bao JQ, Ke AB et al (2014) Utility of Oatp1a/1b-knockout and OATP1B1/3-humanized mice in the study of OATP-mediated pharmacokinetics and tissue distribution: case studies with pravastatin, atorvastatin, simvastatin, and carboxydichlorofluorescein. Drug Metab Dispos 42:182–192.  https://doi.org/10.1124/dmd.113.054783 CrossRefGoogle Scholar
  24. Krähenbühl S, Pavik-Mezzour I, von Eckardstein A (2016) Unmet needs in LDL-C lowering: when statins won’t do! Drugs 76:1175–1190.  https://doi.org/10.1007/s40265-016-0613-0 CrossRefPubMedCentralPubMedGoogle Scholar
  25. Kwak H-B, Thalacker-Mercer A, Anderson EJ et al (2012) Simvastatin impairs ADP-stimulated respiration and increases mitochondrial oxidative stress in primary human skeletal myotubes. Free Radic Biol Med 52:198–207.  https://doi.org/10.1016/j.freeradbiomed.2011.10.449 CrossRefGoogle Scholar
  26. Larsen S, Stride N, Hey-Mogensen M et al (2013) Simvastatin effects on skeletal muscle: relation to decreased mitochondrial function and glucose intolerance. J Am Coll Cardiol 61:44–53.  https://doi.org/10.1016/j.jacc.2012.09.036 CrossRefGoogle Scholar
  27. Law MR, Wald NJ, Rudnicka AR (2003) Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ 326:1423.  https://doi.org/10.1136/bmj.326.7404.1423 CrossRefPubMedCentralPubMedGoogle Scholar
  28. Liang H, Ward WF (2006) PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 30:145–151.  https://doi.org/10.1152/advan.00052.2006 CrossRefGoogle Scholar
  29. Lin J, Puigserver P, Donovan J et al (2002a) Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 277:1645–1648.  https://doi.org/10.1074/jbc.C100631200 CrossRefGoogle Scholar
  30. Lin J, Wu H, Tarr PT et al (2002b) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797–801.  https://doi.org/10.1038/nature00904 CrossRefGoogle Scholar
  31. Ling C, Poulsen P, Carlsson E et al (2004) Multiple environmental and genetic factors influence skeletal muscle PGC-1α and PGC-1β gene expression in twins. J Clin Investig 114:1518–1526.  https://doi.org/10.1172/JCI21889 CrossRefGoogle Scholar
  32. Liu W, Saint DA (2002) A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal Biochem 302:52–59.  https://doi.org/10.1006/abio.2001.5530 CrossRefGoogle Scholar
  33. Ljubicic V, Joseph A-M, Saleem A et al (2010) Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging. Biochim Biophys Acta 1800:223–234.  https://doi.org/10.1016/j.bbagen.2009.07.031 CrossRefGoogle Scholar
  34. McKenney JM (2003) Pharmacologic characteristics of statins. Clin Cardiol 26:32–38.  https://doi.org/10.1002/clc.4960261507 CrossRefGoogle Scholar
  35. Meng Z-X, Li S, Wang L et al (2013) Baf60c drives glycolytic metabolism in the muscle and improves systemic glucose homeostasis through Deptor-mediated Akt activation. Nat Med 19:640–645.  https://doi.org/10.1038/nm.3144 CrossRefPubMedCentralPubMedGoogle Scholar
  36. Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90CrossRefGoogle Scholar
  37. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66CrossRefGoogle Scholar
  38. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661.  https://doi.org/10.1096/fj.07-9574LSF CrossRefGoogle Scholar
  39. Röckl KSC, Hirshman MF, Brandauer J et al (2007) Skeletal muscle adaptation to exercise training. Diabetes 56:2062–2069.  https://doi.org/10.2337/db07-0255 CrossRefGoogle Scholar
  40. RStudio Team (2016) RStudio: Integrated development environment for R. RStudio, Inc., Boston, MA. http://www.rstudio.com/ Google Scholar
  41. Rowe G, Patten I, Zsengeller ZK et al (2013) Disconnecting mitochondrial content from respiratory chain capacity in PGC-1-deficient skeletal muscle. Cell Rep 3:1449–1456.  https://doi.org/10.1016/j.celrep.2013.04.023 CrossRefPubMedCentralPubMedGoogle Scholar
  42. Schick B, Laaksonen R, Frohlich JJ et al (2007) Decreased skeletal muscle mitochondrial DNA in patients treated with high-dose simvastatin. Clin Pharmacol Ther 81:650–653.  https://doi.org/10.1038/sj.clpt.6100124 CrossRefGoogle Scholar
  43. Schirris TJJ, Renkema GH, Ritschel T et al (2015) Statin-induced myopathy is associated with mitochondrial complex III inhibition. Cell Metab 22:399–407.  https://doi.org/10.1016/j.cmet.2015.08.002 CrossRefGoogle Scholar
  44. Seachrist JL, Loi C-M, Evans MG et al (2005) Roles of exercise and pharmacokinetics in cerivastatin-induced skeletal muscle toxicity. Toxicol Sci 88:551–561.  https://doi.org/10.1093/toxsci/kfi305 CrossRefGoogle Scholar
  45. Singh F, Charles A-L, Schlagowski A-I et al (2015) Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis. Biochim Biophys Acta Mol Cell Res 1853:1574–1585.  https://doi.org/10.1016/j.bbamcr.2015.03.006 CrossRefGoogle Scholar
  46. Stringer H, Sohi J, Maguire GK, Côté J HCF (2013) Decreased skeletal muscle mitochondrial DNA in patients with statin-induced myopathy. J Neurol Sci 325:142–147.  https://doi.org/10.1016/j.jns.2012.12.023 CrossRefGoogle Scholar
  47. Thompson PD, Panza G, Zaleski A, Taylor B (2016) Statin-associated side effects. J Am Coll Cardiol 67:2395–2410.  https://doi.org/10.1016/j.jacc.2016.02.071 CrossRefGoogle Scholar
  48. Veksler VI, Kuznetsov AV, Sharov VG et al (1987) Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta 892:191–196CrossRefGoogle Scholar
  49. Vianna CR, Huntgeburth M, Coppari R et al (2006) Hypomorphic mutation of PGC-1beta causes mitochondrial dysfunction and liver insulin resistance. Cell Metab 4:453–464.  https://doi.org/10.1016/j.cmet.2006.11.003 CrossRefPubMedCentralPubMedGoogle Scholar
  50. Walker DB, Jacobson TA (2008) Initiating statins in the elderly: the evolving challenge. Curr Opin Endocrinol Diabetes Obes 15:182–187.  https://doi.org/10.1097/MED.0b013e3282f7cd6d CrossRefGoogle Scholar
  51. Westwood FR, Bigley A, Randall K et al (2005) Statin-induced muscle necrosis in the rat: distribution, development, and fibre selectivity. Toxicol Pathol 33:246–257.  https://doi.org/10.1080/01926230590908213 CrossRefGoogle Scholar
  52. Zechner C, Lai L, Zechner JF et al (2010) Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab 12:633–642.  https://doi.org/10.1016/j.cmet.2010.11.008 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Clinical Pharmacology and Toxicology, Department of BiomedicineUniversity HospitalBaselSwitzerland
  2. 2.Université de Strasbourg, Fédération de Médecine Translationnelle, Equipe d’Accueil 3072, Institut de Physiologie, Faculté de MédecineStrasbourgFrance
  3. 3.Swiss Centre for Applied Human Research (SCAHT)BaselSwitzerland
  4. 4.Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
  5. 5.Research Programs Unit, Molecular Neurology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland

Personalised recommendations