Advertisement

Archives of Toxicology

, Volume 93, Issue 2, pp 293–310 | Cite as

The role of roughage provision on the absorption and disposition of the mycotoxin deoxynivalenol and its acetylated derivatives in calves: from field observations to toxicokinetics

  • Bonnie Valgaeren
  • Léonard Théron
  • Siska Croubels
  • Mathias Devreese
  • Siegrid De Baere
  • Els Van Pamel
  • Els Daeseleire
  • Marthe De Boevre
  • Sarah De Saeger
  • Arnau Vidal
  • José Diana Di Mavungu
  • Philipp Fruhmann
  • Gerhard Adam
  • Alfons Callebaut
  • Calixte Bayrou
  • Vincent Frisée
  • Anne-Sophie Rao
  • Emilie Knapp
  • Arnaud Sartelet
  • Bart Pardon
  • Piet Deprez
  • Gunther AntonissenEmail author
Toxicokinetics and Metabolism

Abstract

A clinical case in Belgium demonstrated that feeding a feed concentrate containing considerable levels of deoxynivalenol (DON, 1.13 mg/kg feed) induced severe liver failure in 2- to 3-month-old beef calves. Symptoms disappeared by replacing the highly contaminated corn and by stimulating ruminal development via roughage administration. A multi-mycotoxin contamination was demonstrated in feed samples collected at 15 different veal farms in Belgium. DON was most prevalent, contaminating 80% of the roughage samples (mixed straw and maize silage; average concentration in positives: 637 ± 621 µg/kg, max. 1818 µg/kg), and all feed concentrate samples (411 ± 156 µg/kg, max. 693 µg/kg). In order to evaluate the impact of roughage provision and its associated ruminal development on the gastro-intestinal absorption and biodegradation of DON and its acetylated derivatives (3- and 15-ADON) in calves, a toxicokinetic study was performed with two ruminating and two non-ruminating male calves. Animals received in succession a bolus of DON (120 µg/kg bodyweight (BW)), 15-ADON (50 µg/kg BW), and 3-ADON (25 µg/kg) by intravenous (IV) injection or per os (PO) in a cross-over design. The absolute oral bioavailability of DON was much higher in non-ruminating calves (50.7 ± 33.0%) compared to ruminating calves (4.1 ± 4.5%). Immediately following exposure, 3- and 15-ADON were hydrolysed to DON in ruminating calves. DON and its acetylated metabolites were mainly metabolized to DON-3-glucuronide, however, also small amounts of DON-15-glucuronide were detected in urine. DON degradation to deepoxy-DON (DOM-1) was only observed to a relevant extent in ruminating calves. Consequently, toxicity of DON in calves is closely related to roughage provision and the associated stage of ruminal development.

Keywords

Biodegradation Calf Deoxynivalenol 3- and 15-Acetyldeoxynivalenol Mycotoxin Toxicokinetics 

Notes

Acknowledgements

The technical assistance of J. Muyle, F. Moons, C. Detavernier and E. Heyndrickx was gratefully appreciated. G. Antonissen was supported by a postdoctoral fellowships from Biomin Holding GmbH (Getzersdorf, Austria) and Research Foundation-Flanders (12V6418N). The production of analytical standards of DON-3-GlcA and DON-sulfates was supported by B. Warth and funded by the Vienna Science and Technology Fund (WWTF LS12-021) and the Austrian Science fund (FWF, SFB Fusarium, F3702).

Compliance with ethical standards

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the Ethical Committee of the Faculty of Veterinary Medicine and the Faculty of Bioscience Engineering of Ghent University (EC2014/93).

Supplementary material

204_2018_2368_MOESM1_ESM.pdf (150 kb)
Supplementary material 1 (PDF 150 KB)
204_2018_2368_MOESM2_ESM.pdf (163 kb)
Supplementary material 2 (PDF 162 KB)
204_2018_2368_MOESM3_ESM.pdf (283 kb)
Supplementary material 3 (PDF 283 KB)
204_2018_2368_MOESM4_ESM.pdf (24 kb)
Supplementary material 4 (PDF 23 KB)
204_2018_2368_MOESM5_ESM.pdf (258 kb)
Supplementary material 5 (PDF 257 KB)
204_2018_2368_MOESM6_ESM.pdf (147 kb)
Supplementary material 6 (PDF 146 KB)
204_2018_2368_MOESM7_ESM.pdf (258 kb)
Supplementary material 7 (PDF 257 KB)

References

  1. Antonissen G, Martel A, Pasmans F, Ducatelle R, Verbrugghe E, Vandenbroucke V, Li SJ, Haesebrouck F, Van Immerseel F, Croubels S (2014) The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins 6:430–452CrossRefGoogle Scholar
  2. Antonissen G, Van Immerseel F, Pasmans F, Ducatelle R, Janssens GPJ, De Baere S, Mountzouris KC, Su S, Wong EA, De Meulenaer B, Verlinden M, Devreese M, Haesebrouck F, Novak B, Dohnal B, Martel A, Croubels S (2015) The mycotoxins deoxynivalenol and fumonisins alter the extrinsic component of intestinal barrier in broiler chickens. J Agric Food Chem 63:10846–10855CrossRefGoogle Scholar
  3. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516CrossRefGoogle Scholar
  4. Berends H, Van den Borne J, Mollenhorst H, Van Reenen C, Bokkers E, Gerrits W (2014) Utilization of roughages and concentrates relative to that of milk replacer increases strongly with age in veal calves. J Dairy Sci 97:6475–6484CrossRefGoogle Scholar
  5. Berthiller F, Crews C, Dall’Asta C, De Saeger S, Haesaert G, Karlovsky P, Oswald IP, Seefelder W, Speijers G, Stroka J (2013) Masked mycotoxins: a review. Mol Nutr Food Res 57:165–186CrossRefGoogle Scholar
  6. Bottalico A (1998) Fusarium diseases of cereals: species complex and related mycotoxin profiles, in Europe. J Plant Pathol 80:85–103Google Scholar
  7. Bouhet S, Oswald IP (2005) The effects of mycotoxins, fungal food contaminants, on the intestinal epithelial cell-derived innate immune response. Vet Immunol Immunop 108:199–209CrossRefGoogle Scholar
  8. Bracarense APFL, Lucioli J, Grenier B, Pacheco GD, Moll W-D, Schatzmayr G, Oswald IP (2012) Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets. Brit J Nutr 107:1776–1786CrossRefGoogle Scholar
  9. Broekaert N, Devreese M, De Baere S, De Backer P, Croubels S (2015a) Modified Fusarium mycotoxins unmasked: From occurrence in cereals to animal and human excretion. Food Chem Toxicol 80:17–31CrossRefGoogle Scholar
  10. Broekaert N, Devreese M, De Mil T, Fraeyman S, Antonissen G, De Baere S, De Backer P, Vermeulen A, Croubels S (2015b) Oral bioavailability, hydrolysis, and comparative toxicokinetics of 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol in broiler chickens and pigs. J Agric Food Chem 63:8734–8742CrossRefGoogle Scholar
  11. Broekaert N, Devreese M, van Bergen T, Schauvliege S, De Boevre M, De Saeger S, Vanhaecke L, Berthiller F, Michlmayr H, Malachová A, Adam G, Vermeulen A, Croubels S (2017) In vivo contribution of deoxynivalenol-3-β-d-glucoside to deoxynivalenol exposure in broiler chickens and pigs: oral bioavailability, hydrolysis and toxicokinetics. Arch Toxicol 91:699–712CrossRefGoogle Scholar
  12. Casteel S, Rottinghaus G, Johnson G, Wicklow D (1995) Liver disease in cattle induced by consumption of moldy hay. Vet Hum Toxicol 37:248–250Google Scholar
  13. Craig AM, Pearson EG, Meyer C, Schmitz JA (1991) Serum liver-enzyme and histopathologic changes in calves with chronic and chronic-delayed Senecio jacobaea toxicosis. Am J Vet Res 52:1969–1978Google Scholar
  14. Dänicke S, Matthäus K, Lebzien P, Valenta H, Stemme K, Ueberschär K-H, Razzazi-Fazeli E, Böhm J, Flachowsky G (2005) Effects of Fusarium toxin-contaminated wheat grain on nutrient turnover, microbial protein synthesis and metabolism of deoxynivalenol and zearalenone in the rumen of dairy cows. J Anim Physiol Anim Nutr 89:303–315CrossRefGoogle Scholar
  15. De Boevre M, Di Mavungu JD, Landschoot S, Audenaert K, Eeckhout M, Maene P, Haesaert G, De Saeger S (2012) Natural occurrence of mycotoxins and their masked forms in food and feed products. World Mycotoxin J 5:207–219CrossRefGoogle Scholar
  16. Devreese M, Antonissen G, Broekaert N, De Mil T, De Baere S, Vanhaecke L, De Backer P, Croubels S (2015) Toxicokinetic study and oral bioavailability of DON in turkey poults, and comparative biotransformation between broilers and turkeys. World Mycotoxin J 8:533–539CrossRefGoogle Scholar
  17. Driehuis F, Spanjer MC, Scholten JM, Te Giffel MC (2008) Occurrence of mycotoxins in maize, grass and wheat silage for dairy cattle in the Netherlands. Food Addit Contam B 1:41–50CrossRefGoogle Scholar
  18. Eriksen GS, Pettersson H (2004) Toxicological evaluation of trichothecenes in animal feed. Anim Feed Sci Technol 114:205–239CrossRefGoogle Scholar
  19. Eriksen GS, Pettersson H, Lindberg JE (2003) Absorption, metabolism and excretion of 3-acetyl DON in pigs. Arch Tierernahr 57:335–345Google Scholar
  20. European Commission (1997) 97/2/EC of 20 January 1997 amending Directive 91/629/EEC laying down minimum standards for the protection of calves. Off J Eur Commun L 025:24–25Google Scholar
  21. European Commission (2002) 2002/657/EC implementing council directive 96/23/EC concerning the performances of analytical methods and the interpretation of results. Off J Eur Commun L 221:8–36Google Scholar
  22. European Commission (2006) 2006/576/EC commission recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off J Eur Union L229:7–9Google Scholar
  23. Fink-Gremmels J (2008) Mycotoxins in cattle feeds and carry-over to dairy milk: a review. Food Addit Contam 25:172–180CrossRefGoogle Scholar
  24. Fruhmann P, Warth B, Hametner C, Berthiller F, Horkel E, Adam G, Sulyok M, Krska R, Fröhlich J (2012) Synthesis of deoxynivalenol-3-beta-d-O-glucuronide for its use as biomarker for dietary deoxynivalenol exposure. World Mycotoxin J 5:127–132CrossRefGoogle Scholar
  25. Fruhmann P, Skrinjar P, Weber J, Mikula H, Warth B, Sulyok M, Krska R, Adam G, Rosenberg E, Hametner C, Fröhlich J (2014) Sulfation of deoxynivalenol, its acetylated derivatives, and T2-toxin. Tetrahedron 70:5260–5266CrossRefGoogle Scholar
  26. Fuchs E, Binder E, Heidler D, Krska R (2002) Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Addit Contam 19:379–386CrossRefGoogle Scholar
  27. Gallo A, Giuberti G, Frisvad JC, Bertuzzi T, Nielsen KF (2015) Review on mycotoxin issues in ruminants: occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects. Toxins 7:3057–3111CrossRefGoogle Scholar
  28. Gasthuys E, Vandecasteele T, De Bruyne P, Vande Walle J, De Backer P, Cornillie P, Devreese M, Croubels S (2016) The potential use of piglets as human pediatric surrogate for preclinical pharmacokinetic and pharmacodynamic drug testing. Curr Pharm Des 22:4069–4085CrossRefGoogle Scholar
  29. Gerez JR, Pinton P, Callu P, Grosjean F, Oswald IP, Bracarense APFL (2015) Deoxynivalenol alone or in combination with nivalenol and zearalenone induce systemic histological changes in pigs. Exp Toxicol Pathol 67:89–98CrossRefGoogle Scholar
  30. Goyarts T, Dänicke S (2006) Bioavailability of the Fusarium toxin deoxynivalenol (DON) from naturally contaminated wheat for the pig. Toxicol Lett 163:171–182CrossRefGoogle Scholar
  31. Heitzman RJ (1994) Veterinary Drug Residues, Report Eur. 14126-EN. Commission of the EC, Brussels-LuxembourgGoogle Scholar
  32. Ingalls J (1996) Influence of deoxynivalenol on feed consumption by dairy cows. Anim Feed Sci Technol 60:297–300CrossRefGoogle Scholar
  33. Ji F, Wu J, Zhao H, Xu J, Shi J (2015) Relationship of deoxynivalenol content in grain, chaff, and straw with Fusarium head blight severity in wheat varieties with various levels of resistance. Toxins 7:728–742CrossRefGoogle Scholar
  34. King RR, Mcqueen RE, Levesque D, Greenhalgh R (1984) Transformation of deoxynivalenol (vomitoxin) by rumen microorganisms. J Agric Food Chem 32:1181–1183CrossRefGoogle Scholar
  35. Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom L, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot A-C, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy J-M, Gong YY, Meyer K, Naegeli H, Parent-Massin D, Rietjens I, van Egmond H, Altieri A, Eskola M, Gergelova P, Bordajandi LR, Benkova B, Dörr B, Gkrillas A, Gustavsson N, van Manen M, Edler L (2017) Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J.  https://doi.org/10.2903/j.efsa.2017.4718 Google Scholar
  36. Königs M, Schwerdt G, Gekle M, Humpf HU (2008) Effects of the mycotoxin deoxynivalenol on human primary hepatocytes. Mol Nutr Food Res 52:830–839CrossRefGoogle Scholar
  37. Kovalsky P, Kos G, Nährer K, Schwab C, Jenkins T, Schatzmayr G, Sulyok M, Krska R (2016) Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize—an extensive survey. Toxins 8:363CrossRefGoogle Scholar
  38. Leruste H, Brscic M, Cozzi G, Kemp B, Wolthuis-Fillerup M, Lensink BJ, Bokkers EAM, van Reenen CG (2014) Prevalence and potential influencing factors of non-nutritive oral behaviors of veal calves on commercial farms. J Dairy Sci 97:7021–7030CrossRefGoogle Scholar
  39. Maresca M (2013) From the gut to the brain: journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins 5(4):784–820CrossRefGoogle Scholar
  40. Mattiello S, Canali E, Ferrante V, Caniatti M, Gottardo F, Cozzi G, Andrighetto I, Verga M (2002) The provision of solid feeds to veal calves: II. Behavior, physiology, and abomasal damage. J Anim Sci 80:367–375CrossRefGoogle Scholar
  41. Maul R, Warth B, Kant JS, Schebb NH, Krska R, Koch M, Sulyok M (2012) Investigation of the hepatic glucuronidation pattern of the Fusarium mycotoxin deoxynivalenol in various species. Chem Res Toxicol 25(12):2715–2717CrossRefGoogle Scholar
  42. Mikami O, Yamamoto S, Yamanaka N, Nakajima Y (2004) Porcine hepatocyte apoptosis and reduction of albumin secretion induced by deoxynivalenol. Toxicology 204:241–249CrossRefGoogle Scholar
  43. Monbaliu S, Van Poucke C, Detavernier C, Dumoulin F, Van De Velde M, Schoeters E, Van Dyck S, Averkieva O, Van Peteghem C, De Saeger S (2010) Occurrence of mycotoxins in feed as analyzed by a multi-mycotoxin LC–MS/MS method. J Agr Food Chem 58:66–71CrossRefGoogle Scholar
  44. Pardon B, Catry B, Boone R, Theys H, De Bleecker K, Dewulf J, Deprez P (2014) Characteristics and challenges of the modern Belgian veal industry. Vlaams Diergen Tijds 83:155–163Google Scholar
  45. Payros D, Alassane-Kpembi I, Pierron A, Loiseau N, Pinton P, Oswald IP (2016) Toxicology of deoxynivalenol and its acetylated and modified forms. Arch Toxicol 90:2931–2957CrossRefGoogle Scholar
  46. Pestka JJ, Smolinski AT (2005) Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health B 8:39–69CrossRefGoogle Scholar
  47. Pinton P, Oswald IP (2014) Effect of deoxynivalenol and other type B trichothecenes on the intestine: a review. Toxins 6:1615–1643CrossRefGoogle Scholar
  48. Prelusky DB, Veira DM, Trenholm HL (1985) Plasma pharmacokinetics of the mycotoxin deoxynivalenol following oral and intravenous administration to sheep. J Environ Sci Heal B 20:603–624CrossRefGoogle Scholar
  49. Prelusky DB, Hartin KE, Trenholm HL, Miller JD (1988) Pharmacokinetic fate of 14C-labeled deoxynivalenol in swine. Fundam Appl Toxicol 10:276–286CrossRefGoogle Scholar
  50. Ronzoni A, Bayrou C, Evrard L, Touati K, Sartelet A (2013) Hepatocholecystitis due to Salmonella Dublin in a crossbred calf. 1st Farah Day, Liège, Belgium (October 17, 2014)Google Scholar
  51. Saint-Cyr MJ, Perrin-Guyomard A, Manceau J, Houée P, Delmas JM, Rolland JG, Laurentie M (2015) Risk assessment of deoxynivalenol by revisiting its bioavailability in pig and rat models to establish which is more suitable. Toxins 7:5167–5181CrossRefGoogle Scholar
  52. Schatzmayr G, Streit E (2013) Global occurrence of mycotoxins in the food and feed chain: facts and figures. World Mycotoxin J 6:213–222CrossRefGoogle Scholar
  53. Schwartz-Zimmermann HE, Hametner C, Nagl V, Slavik V, Moll WD, Berthiller F (2014) Deoxynivalenol (DON) sulfonates as major DON metabolites in rats: from identification to biomarker method development, validation and application. Anal Bioanal Chem 406:7911–7924CrossRefGoogle Scholar
  54. Schwartz-Zimmermann HE, Fruhmann P, Dänicke S, Wiesenberger G, Caha S, Weber J, Berthiller F (2015) Metabolism of deoxynivalenol and deepoxy-deoxynivalenol in broiler chickens, pullets, roosters and turkeys. Toxins 7:4706–4729CrossRefGoogle Scholar
  55. Schwartz-Zimmermann HE, Hametner C, Nagl V, Fiby I, Macheiner L, Winkler J, Dänicke S, Clark E, Pestka JJ, Berthiller F (2017) Glucuronidation of deoxynivalenol (DON) by different animal species: identification of iso-DON glucuronides and iso-deepoxy-DON glucuronides as novel DON metabolites in pigs, rats, mice, and cows. Arch Toxicol 91:3857–3872CrossRefGoogle Scholar
  56. Seeling K, Dänicke S, Valenta H, van Egmond HP, Schothorst RC, Jekel AA, Lebzien P, Schollenberger M, Razzazi-Fazeli E, Flachowsky G (2006) Effects of Fusarium toxin-contaminated wheat and feed intake level of the biotransformation and carry-over of deoxynivalenol in dairy cows. Food Addit Contam 23:1008–1020CrossRefGoogle Scholar
  57. Smith BP, Magdesian KG (2009) Alterations in alimentary and hepatic function. In: Smith BP (ed) Large animal internal medicine, 4th edn. Mosby Elsevier, Davis, pp 96–116Google Scholar
  58. Smith MC, Madec S, Coton E, Hymery N (2016) Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins 8:94CrossRefGoogle Scholar
  59. Thompson WL, Wannemacher RW (1986) Structure-function-relationships of 12,13-epoxytrichothecene mycotoxins in cell-culture comparison to whole animal lethality. Toxicon 24:985–994CrossRefGoogle Scholar
  60. Thompson M, Ellison SL, Wood R (2002) Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl Chem 74:835–855CrossRefGoogle Scholar
  61. Turner PC, White KL, Burley VJ, Hopton RP, Rajendram A, Fisher J, Cade JE, Wild CP (2010) A comparison of deoxynivalenol intake and urinary deoxynivalenol in UK adults. Biomarkers 15:553–562CrossRefGoogle Scholar
  62. Van Bost S, Roels S, Mainil J (2001) Necrotoxigenic Escherichia coli type-2 invade and cause diarrhoea during experimental infection in colostrum-restricted newborn calves. Vet Microbiol 8:315–329CrossRefGoogle Scholar
  63. Van Asselt ED, Azambuja W, Moretti A, Kastelein P, De Rijk TC, Stratakou I, Van Der Fels-Klerx HJ (2012) A Dutch field survey on fungal infection and mycotoxin concentrations in maize. Food Addit Contam Part A 29:1556–1565CrossRefGoogle Scholar
  64. Van Limbergen T, Devreese M, Croubels S, Broekaert N, Michiels A, De Saeger S, Maes D (2017) Role of mycotoxins in herds with and without problems with tail necrosis in neonatal pigs. Vet Rec 181:539CrossRefGoogle Scholar
  65. VICH GL 49 (2011) Studies to evaluate the metabolism and residue kinetics of veterinary drugs in food producing animals: validation of analytical methods used in residue depletion studies. http://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM207942.pdf. Accessed 1 Mar 2015
  66. Wan D, Huang L, Pan Y, Wu Q, Chen D, Tao Y, Wang X, Liu Z, Li J, Wang L, Yuan Z (2014) Metabolism, distribution, and excretion of deoxynivalenol with combined techniques of radiotracing, high-performance liquid chromatography ion trap time-of-flight mass spectrometry, and online radiometric detection. J Agric Food Chem 62:288–296CrossRefGoogle Scholar
  67. Warth B, Sulyok M, Fruhmann P, Berthiller F, Schuhmacher R, Hametner C, Adam G, Fröhlich J, Krska R (2012) Assessment of human deoxynivalenol exposure using an LC–MS/MS based biomarker method. Toxicol Lett 211:85–90CrossRefGoogle Scholar
  68. Webb LE, van Reenen C, Berends H, Engel B, de Boer IJM, Gerrits WJJ, Bokkers EAM (2015) The role of solid feed amount and composition and of milk replacer supply in veal calf welfare. J Dairy Sci 98:5467–5481CrossRefGoogle Scholar
  69. Winkler J, Kersten S, Valenta H, Hüther L, Meyer U, Engelhardt U, Dänicke S (2014) Simultaneous determination of zearalenone, deoxynivalenol and their metabolites in bovine urine as biomarkers of exposure. World Mycotoxin J 8:63–74CrossRefGoogle Scholar
  70. Yoshizawa T, Cote LM, Swanson SP, Buck WB (1986) Confirmation of DOM-1, a de-epoxidation metabolite of deoxynivalenol, in biological-fluids of lactating cows. Agric Biol Chem 50:227–222Google Scholar
  71. Zhang J, Shi H, Wang Y, Li S, Zhang H, Cao Z, Yang K (2018) Effects of limit-feeding diets with different forage-to-concentrate ratios on nutrient intake, rumination, ruminal fermentation, digestibility, blood parameters and growth in Holstein heifers. Anim Sci J 89:527–536CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bonnie Valgaeren
    • 1
    • 2
  • Léonard Théron
    • 3
  • Siska Croubels
    • 4
  • Mathias Devreese
    • 4
  • Siegrid De Baere
    • 4
  • Els Van Pamel
    • 5
  • Els Daeseleire
    • 5
  • Marthe De Boevre
    • 6
  • Sarah De Saeger
    • 6
  • Arnau Vidal
    • 6
  • José Diana Di Mavungu
    • 6
  • Philipp Fruhmann
    • 7
    • 8
  • Gerhard Adam
    • 8
  • Alfons Callebaut
    • 9
  • Calixte Bayrou
    • 10
  • Vincent Frisée
    • 3
  • Anne-Sophie Rao
    • 3
  • Emilie Knapp
    • 3
  • Arnaud Sartelet
    • 3
  • Bart Pardon
    • 1
  • Piet Deprez
    • 1
  • Gunther Antonissen
    • 4
    • 11
    Email author
  1. 1.Department of Large Animal Internal Medicine, Faculty of Veterinary MedicineGhent UniversityMerelbekeBelgium
  2. 2.Faculty of Science and TechnologyUniversity College GhentMelleBelgium
  3. 3.Clinical Department of Production Animals, Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
  4. 4.Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary MedicineGhent UniversityMerelbekeBelgium
  5. 5.Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit-Food SafetyMelleBelgium
  6. 6.Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent UniversityGhentBelgium
  7. 7.Institute of Applied Synthetic ChemistryVienna University of TechnologyViennaAustria
  8. 8.Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesTullnAustria
  9. 9.Veterinary and Agrochemical Research CentreCODA-CERVATervurenBelgium
  10. 10.Department of Pathology, Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
  11. 11.Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary MedicineGhent UniversityMerelbekeBelgium

Personalised recommendations