Skip to main content

Advertisement

Log in

Effects of N-acetyl-l-cysteine on target sites of hydroxylated fullerene-induced cytotoxicity in isolated rat hepatocytes

  • In vitro systems
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The effects of N-acetyl-l-cysteine (NAC) on cytotoxicity caused by a hydroxylated fullerene [C60(OH)24], which is known a nanomaterial and/or a water-soluble fullerene derivative, were studied in freshly isolated rat hepatocytes. The exposure of hepatocytes to C60(OH)24 at a concentration of 0.1 mM caused time (0–3 h)-dependent cell death accompanied by the formation of cell blebs, loss of cellular ATP, and reduced glutathione (GSH) and protein thiol levels, as well as the accumulation of glutathione disulfide and malondialdehyde (MDA), indicating lipid peroxidation. Despite this, C60(OH)24-induced cytotoxicity was effectively prevented by NAC pretreatment ranging in concentrations from 1 to 5 mM. Further, the loss of mitochondrial membrane potential (MMP) and generation of oxygen radical species in hepatocytes incubated with C60(OH)24 were inhibited by pretreatment with NAC, which caused increases in cellular and/or mitochondrial levels of GSH, accompanied by increased levels of cysteine via enzymatic deacetylation of NAC. On the other hand, severe depletion of cellular GSH levels caused by diethyl maleate at a concentration of 1.25 mM led to the enhancement of C60(OH)24-induced cell death accompanied by a rapid loss of ATP. Taken collectively, these results indicate that pretreatment with NAC ameliorates (a) mitochondrial dysfunction linked to the depletion of ATP, MMP, and mitochondrial GSH level and (b) induction of oxidative stress assessed by reactive oxygen species generation, losses of intracellular GSH and protein thiol levels, and MDA formation caused by C60(OH)24, suggesting that the onset of toxic effects is at least partially attributable to a thiol redox-state imbalance as well as mitochondrial dysfunction related to oxidative phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DEM:

Diethyl maleate

DCHF-DA:

2′,7′-Dichlorodihydrofluorescein diacetate

DNP-NAC:

2,4-Dinitrophenyl S-conjugate of N-acetyl-l-cysteine

DMSO:

Dimethyl sulfoxide

GSH:

Glutathione

GSSG:

Glutathione disulfide

HEPES:

N-(2-hydroxyethyl)-piperazine-N-(2-ethanesulfonic acid)

MDA:

Malondialdehyde

MPT:

Mitochondrial permeability transition

NAC:

N-acetyl-l-cysteine

ROS:

Reactive oxygen species

MMP:

Mitochondrial membrane potential

References

  • Albano E, Rundgren M, Hervison PJ, Nelson SD, Moldéus P (1985) Mechanisms of N-acetyl-p-benzoquinone imine cytotoxicity. Mol Pharmacol 28:306–311

    CAS  PubMed  Google Scholar 

  • Armstrong JS, Jones DP (2002) Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in Bcl-2 overexpressing HL60 cells. FASEB J 16:1263–1265

    CAS  PubMed  Google Scholar 

  • Aruoma OI, Halliwell B, Hoey BM, Butler J (1989) The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 6:593–597

    Article  CAS  PubMed  Google Scholar 

  • Bellomo G, Mirabelli F, Richelmi P, Malorni W, Iosi F, Orrenius S (1990) The cytoskeleton as a target in quinone toxicity. Free Radic Res Commun 8:391–399

    Article  CAS  PubMed  Google Scholar 

  • Bogdanović G, Kojić V, Dordević A, Canadanović-Brunet J, Vojinović-Miloradov M, Baltić VV (2004) Modulating activity of fullerols C60(OH)22 on doxorubicin-induced cytotoxicity. Toxicol In Vitro 18:629–637

    Article  PubMed  Google Scholar 

  • Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11. doi:10.1186/1743-8977-3-11

    Article  PubMed Central  PubMed  Google Scholar 

  • Cain K, Skilleter DS (1987) Preparation and use of mitochondria in toxicological research. In: Snell K, Mullock B (eds) Biochemical toxicology—A practical approach. IRL, Oxford, pp 217–254

    Google Scholar 

  • Chen YW, Hwang KC, Yen CC, Lai YL (2004) Fullerene derivatives protect against oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. Am J Physiol Regul Integr Comp Physiol 287:R21–R26

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Xing G, Wang J, Zhao F, Chai Z, Fang X (2005) Multihydroxylated [Gd@C82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett 5:2050–2057

    Article  CAS  PubMed  Google Scholar 

  • Chernyak BV, Bernardi P (1996) The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites. Eur J Biochem 238:623–630

    Article  CAS  PubMed  Google Scholar 

  • Dugan LL, Gabrielsen JK, Yu SP, Lin TS, Choi DW (1996) Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol Dis 3:129–135

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Checa JC, Kaplowitz N (2005) Hepatic mitochondrial glutathione: transport and role in disease and toxicity. Toxicol Appl Pharmacol 204:263–273

    Article  CAS  PubMed  Google Scholar 

  • Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C (2002) Cellular localization of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294:116–119

    Article  CAS  PubMed  Google Scholar 

  • Hinchman CA, Matsumoto H, Simmons T, Ballatori N (1991) Intrahepatic conversion of a glutathione conjugate to its mercapturic acid. Metabolism of 1-chloro-2,4-dinitrobenzne in isolated perfused rats and guinea pig livers. J Biol Chem 266:22179–22185

    CAS  PubMed  Google Scholar 

  • Hoet PHM, Brüske-Hohlfeld I, Salata O (2004) Nanoparticles-known and unknown health risks. J Nanobiotechnol 2:1–15

    Google Scholar 

  • Injac R, Perse M, Obermajer N, Djordjevic-Milic V, Prijatelj M, Djordjevic A, Cerar A, Strukelj B (2008) Potential hepatoprotective effects of fullerenol C60(OH)24 in doxorubicin-induced hepatotoxicity in rats with mammary carcinomas. Biomaterials 29:3451–3460

    Article  CAS  PubMed  Google Scholar 

  • Injac R, Radic N, Govedarica B, Perse M, Cerar A, Djordjevic A, Strukelj B (2009) Acute doxorubicin pulmotoxicity in rat with malignant neoplasm is effectively treated with fullerenol C60(OH)24 through inhibition of oxidative stress. Pharmacol Rep 61:335–342

    CAS  PubMed  Google Scholar 

  • Isakovic A, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, Mirkovic M, Dramicanin M, Harhaji L, Raicevic N, Nikolic Z, Trakovic V (2006) Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol Sci 91:173–183

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Chen WQ, Tang XW, Chiang LY, Yang CY, Schloss JV, Wu JY (2000) Polyhydroxylated C60, fullerenols, as glutamate receptor antagonists and neuroprotective agents. J Neurosci Res 62:600–607

    Article  CAS  PubMed  Google Scholar 

  • Johnson-Lyles DN, Peifley K, Lockett S, Neun BW, Hansen M, Clogston J, Stern ST, McNeil SE (2010) Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicol Appl Pharmacol 248:249–258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones DP (1981) Determination of pyridine dinucleotides in cell extracts by high-performance liquid chromatography. J Chromatogr 225:446–449

    Article  CAS  PubMed  Google Scholar 

  • Kamat JP, Devasagayam TP, Priyadarsini KI, Mohan H (2000) Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology 155:55–61

    Article  CAS  PubMed  Google Scholar 

  • Kehrer JP, Jones DP, Lemasters JJ, Farber H, Jaeschke H (1990) Mechanisms of hypoxic cell injury. Summary of the symposium presented at the 1990 annual meeting of the society of toxicology. Toxicol Appl Pharmacol 106:165–178

    Article  CAS  PubMed  Google Scholar 

  • Kettenhofen NJ, Wood MJ (2010) Formation, reactivity, and detection of protein sulfenic acids. Chem Res Toxicol 23:1633–1646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  • Ku RH, Billings RE (1986) The role of mitochondrial glutathione and cellular protein sulfhydryls in formaldehyde toxicity in glutathione-depleted rat hepatocytes. Arch Biochem Biophys 247:183–189

    Article  CAS  PubMed  Google Scholar 

  • Lemasters JJ, Nieminen AL, Chacon E, Imberti R, Gores G, Reece JM, Herman B (1993) Use of fluorescent probes to monitor mitochondrial membrane potential in isolated mitochondria, cell suspensions, and cultured cells. In: Lash LH, Jones DP (eds) Mitochondrial dysfunction. Academic, San Diego, pp 404–415

    Chapter  Google Scholar 

  • Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Percept 111:455–460

    Article  CAS  Google Scholar 

  • Lluis JM, Morales A, Blasco C, Colell A, Mari M, Garcia-Ruiz C, Fernandez-Checa JC (2005) Critical role of mitochondrial glutathione in the survival of hepatocytes during hypoxia. J Biol Chem 280:3224–3232

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11:2685–2700

    Article  PubMed  Google Scholar 

  • Mehta R, Chan K, Lee O, Tafazoli S, O’Brien PJ (2008) Drug-associated mitochondrial toxicity. In: Dykens JA, Will Y (eds) Drug-induced mitochondrial dysfunction. Wiley, Hoboken, pp 71–126

    Chapter  Google Scholar 

  • Mithöfer K, Sandy MS, Smith MT, Di Monte D (1992) Mitochondrial poisons cause depletion of reduced glutathione in isolated hepatocytes. Arch Biochem Biophys 295:132–136

    Article  PubMed  Google Scholar 

  • Moldéus P, Hogberg J, Orrenius S (1978) Isolation and use of liver cells. Methods Enzymol 52:60–71

    PubMed  Google Scholar 

  • Mrdanović J, Solajić C, Bogdanović V, Stankov K, Bogdanović G, Djordjevic A (2009) Effects of fullerenol C60(OH)24 on the frequency of micronuclei and chromosome aberrations in CHO-K1 cells. Mutat Res 680:25–30

    Article  PubMed  Google Scholar 

  • Murugan MA, Gangadharan B, Mathur P (2002) Antioxidative effect of fullerenol on goat epididymal spermatozoa. Asian J Androl 4:149–152

    CAS  PubMed  Google Scholar 

  • Nakagawa Y, Tayama S, Moore GA, Moldéus P (1992) Relationship between metabolism and cytotoxicity of ortho-phenylphenol in isolated rat hepatocytes. Biochem Pharmacol 43:1431–1437

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa Y, Tayama S, Moore G, Moldéus P (1993) Effect of diethyl maleate on phenyl-hydroquinone-induced cytotoxicity in isolated rat hepatocytes. Xenobiotica 23:205–213

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa Y, Suzuki T, Kamimura H, Nagai F (2005) N-nitrosofenfluramine induces cytotoxicity via mitochondrial dysfunction and oxidative stress in isolated rat hepatocytes. Arch Toxicol 79:312–320

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa Y, Suzuki T, Ishii H, Nakae D, Ogata A (2011) Cytotoxic effects of hydroxylated fullerenes on isolated rat hepatocytes via mitochondrial dysfunction. Arch Toxicol 85:1429–1440

    Article  CAS  PubMed  Google Scholar 

  • Nicotera P, Bellomo G, Orrenius S (1992) Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol 32:449–470

    Article  CAS  PubMed  Google Scholar 

  • Niwa Y, Iwai N (2007) Nanomaterials induce oxidized low-density lipoprotein cellular uptake in macrophages and platelet aggregation. Circ J 71:437–444

    Article  CAS  PubMed  Google Scholar 

  • Pombrio JM, Giangreco A, Li L, Wempe MF, Anders MW, Sweet DH, Pritchard JB, Ballatori N (2001) Mercapturic acid (N-acetylcysteine S-conjugates) as endogenous substrates for the renal organic anion transporter-1. Mol Pharmacol 60:1091–1099

    CAS  PubMed  Google Scholar 

  • Reed DJ (1990) Glutathione: toxicological implications. Annu Rev Pharmacol Toxicol 30:603–631

    Article  CAS  PubMed  Google Scholar 

  • Reed DJ, Babson JR, Beatty PW, Brodie AE, Ellis WW, Potter DW (1980) High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide and related thiols and disulfides. Anal Biochem 106:55–62

    Article  CAS  PubMed  Google Scholar 

  • Roberts JE, Wielgus AR, Boyes WK, Andley U, Chignell CF (2008) Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells. Toxicol Appl Pharmacol 228:49–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P, Larsen A, Danscher G (2007) Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol 4:10. doi:10.1186/1743-8911-4-10

    Article  PubMed Central  PubMed  Google Scholar 

  • Saitoh Y, Xiao L, Mizuno H, Kato S, Aoshima H, Taira H, Kokubo K, Miwa N (2010) Novel polyhydroxylated fullerene suppresses intracellular oxidative stress together with repression of intracellular lipid accumulation during the differentiation of OP9 preadipocytes into adipocytes. Free Radic Res 44:1072–1081

    Article  CAS  PubMed  Google Scholar 

  • Sandy MS, Moldéus P, Ross D, Smith M (1986) Role of redox cycling and lipid peroxidation in bipyridyl herbicide cytotoxicity. Studies with a compromised isolated hepatocyte model system. Biochem Pharmacol 35:3095–3101

    Article  CAS  PubMed  Google Scholar 

  • Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin VL (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887

    Article  CAS  Google Scholar 

  • Shen H-M, Shi C-Y, Shen Y, Ong C-N (1996) Detection of elevated reactive oxygen species level in cultured rat hepatocytes treated with aflatoxin B1. Free Radic Biol Med 21:139–146

    Article  CAS  PubMed  Google Scholar 

  • Smith CV, Jones DP, Guenthner TM, Lash LH, Lauterburg BH (1996) Compartmentation of glutathione: implications for the study of toxicity and disease. Toxicol Appl Pharmacol 140:1–12

    Article  CAS  PubMed  Google Scholar 

  • Stone V, Johnston H, Schins RP (2009) Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol 39:613–626

    Article  CAS  PubMed  Google Scholar 

  • Takashima M, Shichiri M, Hagihara Y, Yoshida Y, Niki E (2012) Reactive toward oxygen radicals and antioxidant action of thiol compounds. Biofactors 38:240–248

    Article  CAS  PubMed  Google Scholar 

  • Tirmenstein MA, Nicholls-Grzemski FA, Zhang JG, Fariss MW (2000) Glutathione depletion and the production of reactive oxygen species in isolated hepatocyte suspensions. Chem Biol Interact 127:201–217

    Article  CAS  PubMed  Google Scholar 

  • Tsai MC, Chen YH, Chiang LY (1997) Polyhydroxylated C60, fullerenol, a novel free-radical trapper, prevented hydrogen peroxide- and cumene hydroperoxide-elicited changes in rat hippocampus in vitro. J Pharm Pharmacol 49:438–445

    Article  CAS  PubMed  Google Scholar 

  • Ueng T-H, Kang-JJ Wang HW, Cheng-YW Chiang LY (1997) Suppression of microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C60. Toxicol Lett 93:29–37

    Article  CAS  PubMed  Google Scholar 

  • Wallace KB, Eells JT, Madeira VM, Cortopassi G, Jones DP (1997) Mitochondria-mediated cell injury. Symposium overview. Fundam Appl Toxicol 38:23–37

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  CAS  PubMed  Google Scholar 

  • Yamawaki H, Iwai N (2006) Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am J Physiol Cell Physiol 290:C1495–C1502

    Article  CAS  PubMed  Google Scholar 

  • Zafarullah M, Li WQ, Sylvester J, Ahmad M (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60:6–20

    Article  CAS  PubMed  Google Scholar 

  • Zaragoza A, Díez-Fernández C, Alvarez AM, Andés D, Cascales M (2001) Mitochondrial involvement in cocaine-treated rat hepatocytes: effect of N-acetylcysteine and deferoxamine. Br J Pharmacol 132:1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Zhang JG, Tirmenstein MA, Nicholls-Grzemski FA, Fariss NW (2001) Mitochondrial electron transport inhibitors cause lipid peroxidation-dependent and -independent cell death: protective role of antioxidants. Arch Biochem Biophys 393:87–96

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Lau SS, Monks TJ (2011) The cytoprotective effect of N-acetyl-l-cysteine against ROS-induced cytotoxicity is independent of its ability to enhance glutathione synthesis. Toxicol Sci 120:87–97

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Nakagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagawa, Y., Suzuki, T., Nakajima, K. et al. Effects of N-acetyl-l-cysteine on target sites of hydroxylated fullerene-induced cytotoxicity in isolated rat hepatocytes. Arch Toxicol 88, 115–126 (2014). https://doi.org/10.1007/s00204-013-1096-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1096-3

Keywords

Navigation