The effect of temperature fluctuation on the microbial diversity and community structure of rural household biogas digesters at Qinghai Plateau

  • Rui Han
  • Derui ZhuEmail author
  • Jiangwa Xing
  • Quanhui Li
  • Yi Li
  • Laisheng ChenEmail author
Original Paper


Seasonal temperature-fluctuation has been regarded as a key environmental factor affecting rural biogas fermentation yields. The present study investigated the impact of seasonal temperature-fluctuation on operating-temperatures and biogas production in rural household digesters at Qinghai Plateau and revealed the related changes in microbial diversity and community structure by 16S rRNA gene high-throughput sequencing (HTS) analysis. Our results showed closely positive correlation between operating-temperatures and biogas production. HTS analysis indicated the highest diversity for bacteria community in autumn (at highest operating-temperatures) and late winter (at lowest operating-temperatures) and for archaea community only in autumn. HTS analysis classified bacteria into 21 phyla and 346 genera with the most predominant phyla Firmicutes, Bacteroidetes and Proteobacteria (> 72.4% in total) and the most predominant genera Proteiniphilum, Clostridium sensustricto 1, Petrimonas, Pseudomonas and Fastidiosipila (37.09–38.61% in total). HTS analysis also revealed two main archaea orders (Methanomicrobiales and Methanobacteriales) and one predominant genus Methanogenium to support plateau biogas fermentation. Especially, a remarkable impact of temperature on the community abundances of bacteria phyla Synergistetes and archaea genera Methanogenium and Thermogymnomonas was observed, and such microbial community structure changes were positively consistent with the biogas production. The present work provided the first set of evidences to link temperature-controlled modulation of microbial community structure with rural household biogas production at Qinghai Plateau.


Temperature Qinghai Plateau Rural household biogas digesters Microbial diversity Microbial community structure Illumina Miseq high-throughput sequencing 



We gratefully acknowledge financial support from the National Natural Science Foundation of China (31760034 & 31860030), the Applied Basic Research Program of Qinghai Province (2019-ZJ-7052), the Key Research Foundation of Development and Transformation of Qinghai Province (2019-SF-121), the Qinghai Province Technology Commercialization Project Qinghai Special Project for Key Science and Technology (2019-NK-116), and the Team’s Research Program of Microbial Resources in Salt-lakes of Qinghai-Tibetan Plateau (2018-KY-T1). We also greatly appreciate the help of the Shanghai Let Pub Office (China) of ACCDON LLC (USA) for professional editing of the manuscript.


This work was supported by the National Natural Science Foundation of China (31760034 & 31860030), the Applied Basic Research Program of Qinghai Province (2019-ZJ-7052), the Key Research Foundation of Development and Transformation of Qinghai Province (2019-SF-121), the Qinghai Province Technology Commercialization Project Qinghai Special Project for Key Science and Technology (2019-NK-116), and the Team’s Research Program of Microbial Resources in Salt-lakes of Qinghai-Tibetan Plateau (2018-KY-T1).


  1. Ariesyady HD, Ito T, Okabe S (2007) Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res 41:1554–1568PubMedCrossRefPubMedCentralGoogle Scholar
  2. Baker GC, Cowan DA (2004) 16S rDNA primers and the unbiased assessment of thermophile diversity. Biochem Soc T 32:218–221CrossRefGoogle Scholar
  3. Bauer C, Korthals M, Gronauer A et al (2008) Methanogens in biogas production from renewable resources–a novel molecular population analysis approach. Water Sci Technol 58:1433–1439PubMedCrossRefPubMedCentralGoogle Scholar
  4. Chen S, Dong X (2005) Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. Int J Syst Evol Microbiol 55:2257–2261PubMedCrossRefPubMedCentralGoogle Scholar
  5. Dai J, Chen B, Hayat T et al (2015) Sustainability-based economic and ecological evaluation of a rural biogas-linked agro-ecosystem. Renew Sustain Energy Rev 41:347–355CrossRefGoogle Scholar
  6. Dong MH, Wu Y, Li QM et al (2015) Investigation of methanogenic community structures in rural biogas digesters from different climatic regions in Yunnan, southwest China. Curr Microbiol 70:679–684PubMedCrossRefPubMedCentralGoogle Scholar
  7. Franzmann PD, Liu Y, Balkwill DL et al (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47:1068–1072PubMedCrossRefPubMedCentralGoogle Scholar
  8. Godon JJ, Morinière J, Moletta M et al (2005) Rarity associated with specific ecological niches in the bacterial world: the ‘Synergistes’ example. Environ Microbiol 7:213–224PubMedCrossRefPubMedCentralGoogle Scholar
  9. Grabowski A, Tindall BJ, Bardin V et al (2005) Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. Int J Syst Evol Microbiol 55:1113–1121PubMedCrossRefPubMedCentralGoogle Scholar
  10. Han R, Yuan Y, Cao Q et al (2018) PCR-DGGE analysis on microbial community structure of rural household biogas digesters in Qinghai Plateau. Curr Microbiol 75:541–549PubMedCrossRefPubMedCentralGoogle Scholar
  11. Hess M, Sczyrba A, Egan R et al (2011) Metagenomic discovery of biomass degrading genes and genomes from cow rumen. Science 331:463–467PubMedCrossRefPubMedCentralGoogle Scholar
  12. Hugenholtz P, Hooper SD, Kyrpides NC (2009) Focus: synergistetes. Environ Microbiol 11:1327–1329PubMedCrossRefPubMedCentralGoogle Scholar
  13. Jo SJ, Kwon H, Jeong SY et al (2016) Comparison of microbial communities of activated sludge and membrane biofilm in 10 full-scale membrane bioreactors. Water Res 101:214–225PubMedCrossRefPubMedCentralGoogle Scholar
  14. Johnston D, Earley B, Cormican P et al (2017) Illumina MiSeq 16S amplicon sequence analysis of bovine respiratory disease associated bacteria in lung and mediastinal lymph node tissue. BMC Vet Res 13:1–18CrossRefGoogle Scholar
  15. Jumas-Bilak E, Roudière L, Marchandin H (2009) Description of ‘Synergistetes’ phyl. nov. and emended description of the phylum ‘Deferribacteres’ and of the family Syntrophomonadaceae, phylum ‘Firmicutes’. Int J Syst Evol Microbiol 59:1028–1035PubMedCrossRefPubMedCentralGoogle Scholar
  16. Kong Y, Nielsen JL, Nielsen PH (2004) Microautoradiographic study of Rhodocyclus-related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants. Appl Environ Microbiol 70:5483–5490CrossRefGoogle Scholar
  17. Krause L, Diaz NN, Edwards RA et al (2008) Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. J Biotechnol 136:91–101PubMedCrossRefGoogle Scholar
  18. Kröber M, Bekel T, Diaz NN et al (2009) Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 142:38–49PubMedCrossRefPubMedCentralGoogle Scholar
  19. Lai Q, Shao Z (2008) Pseudomonas xiamenensis sp. nov., a denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 58:1911–1915PubMedCrossRefGoogle Scholar
  20. Li J, Lu X (2017) Effect of seasonal temperature on the performance and on the microbial community of a novel AWFR for decentralized domestic wastewater pretreatment. Appl Sci 7:605CrossRefGoogle Scholar
  21. Lin Q, De Vrieze J, Li J et al (2016) Temperature affects microbial abundance, activity and interactions in anaerobic digestion. Bioresour Technol 209:228–236PubMedCrossRefGoogle Scholar
  22. Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189CrossRefGoogle Scholar
  23. Liu Y, Fang J, Tong X et al (2019) Change to biogas production in solid-state anaerobic digestion using rice straw as substrates at different temperatures. Bioresour Technol 293:122066PubMedCrossRefGoogle Scholar
  24. Lu G, Zhu Y, Kong L et al (2017) Impact of a glyphosate-tolerant soybean line on the rhizobacteria, revealed by Illumina MiSeq. J Microbiol Biotechnol 27:561–572PubMedCrossRefGoogle Scholar
  25. Makita H, Kikuchi S, Mitsunobu S et al (2016) Comparative analysis of microbial communities in iron-dominated flocculent mats in deep sea hydrothermal environments. Appl Environ Microb 82:5741–5755CrossRefGoogle Scholar
  26. Narihiro T, Terada T, Kikuchi K et al (2008) Comparative analysis of bacterial and archaeal communities in methanogenicsludge granules from upflow anaerobic sludge blanket reactors treating various food-processing, high-strength organic wastewaters. Microbes Environ 24:88–96CrossRefGoogle Scholar
  27. Pham CH, Vu CC, Sommer SG et al (2014) Factors affecting process temperature and biogas production in small-scale rural biogas digesters in winter in northern Vietnam. Asian Australas J Anim Sci 27:1050–1056PubMedPubMedCentralCrossRefGoogle Scholar
  28. Plumb JJ, Haddad CM, Gibson JAE et al (2007) Acidianus sulfidivorans sp. nov., an extremely acidophilic, thermophilic archaeon isolated from a solfatara on Lihir Island, Papua New Guinea, and emendation of the genus description. Int J Syst Evol Microbiol 57:1418–1423PubMedCrossRefPubMedCentralGoogle Scholar
  29. Qin H, Lang H, Yang H (2013) Characterization of the methanogen community in a household anaerobic digester fed with swine manure in China. Appl Microbiol Biot 97:8163–8171CrossRefGoogle Scholar
  30. Rivière D, Desvignes V, Pelletier E et al (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3:700–714PubMedCrossRefPubMedCentralGoogle Scholar
  31. Roest K, Heilig HG, Smidt H et al (2005) Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater. Syst Appl Microbiol 28:175–185PubMedCrossRefPubMedCentralGoogle Scholar
  32. Schmidt T, Harris P, Lee S et al (2019) Investigating the impact of seasonal temperature variation on biogas production from covered anaerobic lagoons treating slaughterhouse wastewater using lab scale studies. J Environ Chem Eng 7:103077CrossRefGoogle Scholar
  33. Sun R, Zhou AJ, Jia JN et al (2015) Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells. Bioresour Technol 175:68–74PubMedCrossRefPubMedCentralGoogle Scholar
  34. Sun W, Xiao H, Peng Q et al (2016) Analysis of bacterial diversity of Chinese Luzhou-flavor liquor brewed in different seasons by Illumina Miseq sequencing. Ann Microbiol 66:1293–1301CrossRefGoogle Scholar
  35. Vartoukian SR, Palmer RM, Wade WG (2007) The division “Synergistes”. Anaerobe 13:99–106PubMedCrossRefPubMedCentralGoogle Scholar
  36. Wallrabenstein C, Hauschild E, Schink B (1994) Pure culture and cytological properties of ‘Syntriphobacter wolini’. FEMS Microbiol Lett 123:249–254CrossRefGoogle Scholar
  37. Wei YJ, Wu Y, Yan YZ et al (2018) High-throughput sequencing of microbial community diversity in soil, grapes, leaves, grape juice and wine of grapevine from China. PLoS ONE 13:e0193097PubMedPubMedCentralCrossRefGoogle Scholar
  38. Westerholm M, Castillo MP, Andersson AC et al (2019) Effects of thermal hydrolytic pre-treatment on biogas process efficiency and microbial community structure in industrial-and laboratory-scale digesters. Waste Manag 95:150–160PubMedCrossRefPubMedCentralGoogle Scholar
  39. Wirth R, Kovács E, Maróti G et al (2012) Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels 5:41PubMedPubMedCentralCrossRefGoogle Scholar
  40. Yang Y, Yang L, Sun QY (2014) Archaeal and bacterial communities in acid mine drainage from metal-rich abandoned tailing ponds, Tongling, China. T Nonferr Metal Soc 24:3332–3342CrossRefGoogle Scholar
  41. Yang Y, Ren Y, Wang X et al (2018) Ammonia-oxidizing archaea and bacteria responding differently to fertilizer type and irrigation frequency as revealed by Illumina Miseq sequencing. J Soil Sedimen 18:1029–1040CrossRefGoogle Scholar
  42. Ye NF, Lü F, Shao LM et al (2007) Bacterial community dynamics and product distribution during pH-adjusted fermentation of vegetable wastes. J Appl Microbiol 103:1055–1065PubMedCrossRefGoogle Scholar
  43. Yu J, Kim S, Kwon OS (2019) Effect of applied voltage and temperature on methane production and microbial community in microbial electrochemical anaerobic digestion systems treating swine manure. J Ind Microbiol Biotechnol 46:911–923PubMedCrossRefGoogle Scholar
  44. Zhu CG, Zhang JY, Tang YP et al (2011) Diversity of methanogenic archaea in a biogas reactor fed with swine feces as the mono-substrate by mcrA analysis. Microbiol Res 166:27–35PubMedCrossRefGoogle Scholar
  45. Zhu J, Chen L, Zhang Y et al (2018) Revealing the anaerobic acclimation of microbial community in a membrane bioreactor for coking wastewater treatment by Illumina Miseq sequencing. J Environ Sci China 64:139–148PubMedCrossRefGoogle Scholar
  46. Ziembińska-Buczyńska A, Banach A, Bacza T et al (2014) Diversity and variability of methanogens during the shift from mesophilic to thermohilic conditions while biogas production. World J Microbiol Biotechnol 30:3047–3053PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and ForestryQinghai UniversityXiningChina
  2. 2.Research Center of Basic Medical SciencesQinghai University Medical CollegeXiningChina

Personalised recommendations