Advertisement

Exopolysaccharide production in Ensifer meliloti laboratory and native strains and their effects on alfalfa inoculation

  • Emiliano D. Primo
  • Sacha Cossovich
  • Fiorela Nievas
  • Pablo Bogino
  • Ethan A. Humm
  • Ann M. Hirsch
  • Walter GiordanoEmail author
Original Paper

Abstract

Bacterial surface molecules have an important role in the rhizobia-legume symbiosis. Ensifer meliloti (previously, Sinorhizobium meliloti), a symbiotic Gram-negative rhizobacterium, produces two different exopolysaccharides (EPSs), termed EPS I (succinoglycan) and EPS II (galactoglucan), with different functions in the symbiotic process. Accordingly, we undertook a study comparing the potential differences in alfalfa nodulation by E. meliloti strains with differences in their EPSs production. Strains recommended for inoculation as well as laboratory strains and native strains isolated from alfalfa fields were investigated. This study concentrated on EPS-II production, which results in mucoid colonies that are dependent on the presence of an intact expR gene. The results revealed that although the studied strains exhibited different phenotypes, the differences did not affect alfalfa nodulation itself. However, subtle changes in timing and efficacy to the effects of inoculation with the different strains may result because of other as-yet unknown factors. Thus, additional research is needed to determine the most effective inoculant strains and the best conditions for improving alfalfa production under agricultural conditions.

Keywords

Alfalfa Sinorhizobium meliloti Ensifer meliloti Exopolysaccharides Symbiosis Biofertilization 

Notes

Acknowledgements

Grants from the Secretaría de Ciencia y Técnica de la UNRC, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and Consejo Nacional de Investigaciones Científicas y Técnicas of the República Argentina (CONICET) supported this work. EP and SC have a fellowship from the CONICET. FN, PB, and WG are Career Members of CONICET. Our thanks are due to Dr. Nicolás Ayub for helpful suggestions and useful discussions. Support from a Shanbrom Family Fund grant supported research on symbioses in arid environments in the Hirsch laboratory. This research was funded by FONCyT Grant number [PICT 1528/15].

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

Supplementary material

203_2019_1756_MOESM1_ESM.doc (48 kb)
Supplementary file1 (DOC 48 kb)

References

  1. Abdelhadi LO, Lyons TP, Jacques KA (2004) Evaluating inoculants for forage crops in Argentine beef and milk grazing systems: effects on silage quality and system profitability. In: Lyons TP, Jacques KA (Eds.) Nutritional biotechnology in the feed and food industries. Alltech 20th Annual Symposium. Nicholasville, KY, USA pp. 171–177.Google Scholar
  2. Agnusdei MG, Assuero SG, Lattanzi FA, Marino MA (2010) Critical N concentration can vary with growth conditions in forage grasses: implications for plant N status assessment and N deficiency diagnosis. Nutr Cycl Agroecosys 88:215–230CrossRefGoogle Scholar
  3. Arelovich HM, Bravo RD, Martínez MF (2011) Development, characteristics, and trends for beef cattle production in Argentina. Anim Front 1:37–45CrossRefGoogle Scholar
  4. Avci MA, Ozkose A, Tamkoc A (2013) Determination of yield and quality characteristics of alfalfa (Medicago sativa l.) varieties grown in different locations. J Amin Vet Adv 12:487–490Google Scholar
  5. Bogino P, Abod A, Nievas F, Giordano W (2013) Water-limiting conditions alter the structure and biofilm-forming ability of bacterial multispecies communities in the alfalfa rhizosphere. PLoS ONE 8(11):e79614PubMedPubMedCentralCrossRefGoogle Scholar
  6. Caviglia OP, Andrade FH (2010) Sustainable intensification of agriculture in the Argentinean Pampas: capture and use efficiency of environmental resources. Am J Plant Sci Biotechnol 3:1–8Google Scholar
  7. Charoenpanich P, Becker A, Soto MJ, McIntosh M (2015) Quorum sensing restrains growth and is rapidly inactivated during domestication of Sinorhizobium meliloti. Environ Microbiol Rep 7:373–382PubMedCrossRefGoogle Scholar
  8. Denarié J, Debellé F, Promé JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535PubMedCrossRefGoogle Scholar
  9. Doherty D, Leigh JA, Glazebrook J, Walker GC (1988) Rhizobium meliloti mutants that overproduce the R. meliloti acidic calcofluor-binding exopolysaccharide. J Bacteriol 170:4249–4256PubMedPubMedCentralCrossRefGoogle Scholar
  10. Evans LT (1993) Crop evolution. Adaptations and yield. Cambridge University Press, CambridgeGoogle Scholar
  11. Fraysse NF, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the Rhizobium-legume symbiosis. Eur J Biochem 270:1365–1380PubMedCrossRefGoogle Scholar
  12. Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56:195–205PubMedCrossRefGoogle Scholar
  13. Fujishige NA, Jankaew K, Hirsch AM (2008) Biofilm formation in Sinorhizobium meliloti. Biology of plant-microbe interactions, Volume 6. In: Proceedings of the 13th International Congress on Molecular Plant-Microbe Interactions. Eds. Lorito M, Woo SL, and Scala F. ISBN 0965462552Google Scholar
  14. Garcia AN, Ayub ND, Fox AR, Gomez MC, Dieguez MJ, Pagano EM, Berini CA, Muschietti JP, Soto G (2014) Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC Plant Biol 14:248PubMedPubMedCentralCrossRefGoogle Scholar
  15. Geisseler D, Horwath WR (2016) Alfalfa production in California. https://apps1.cdfa.ca.gov/FertilizerResearch/docs/Alfalfa_Production_CA.pdf. Accessed 16 Apr 2019
  16. Giordano W, Hirsch A (2004) The expression of MaEXP1, a Melilotus alba expansin gene is up-regulated during the sweetclover-Sinorhizobium meliloti interaction. Mol Plant Microbe Interact 17:613–622PubMedCrossRefGoogle Scholar
  17. Glazebrook J, Walker GC (1989) A novel exopolysaccharide can function in place of the calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell 56:661–672PubMedCrossRefGoogle Scholar
  18. González JE, York GM, Walker GC (1996) Rhizobium meliloti exopolysaccharides: synthesis and symbiotic function. Gene 179:141–146PubMedCrossRefGoogle Scholar
  19. Herridge D, Peoples M, Boddey R (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18CrossRefGoogle Scholar
  20. Hirsch AM (1999) Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. Curr Opin Plant Biol 2:320–326PubMedCrossRefGoogle Scholar
  21. Hirsch AM, Lum MR, Fujishige NA (2009) Microbial encounters of a symbiotic kind- attaching to roots and other surfaces. In: Emons AMC, Ketelaar T (eds) Root hairs. Plant cell monographs, 12th edn. Springer, Berlin, pp 295–314Google Scholar
  22. Janczarek M, Rachwal K, Marzec A, Grzadziel J, Palusinska-Szysz M (2014) Signal molecules and cell-surface components involved in early stages of the legume–Rhizobium interactions. Appl Soil Ecol 85:94–113CrossRefGoogle Scholar
  23. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633PubMedPubMedCentralCrossRefGoogle Scholar
  24. Jozefkowicz C, Brambilla S, Frare R, Stritzler M, Piccinetti C, Puente M, Berini C, Reyes Pérez P, Soto G, Ayub N (2017a) Stable symbiotic nitrogen fixation under water-deficit field conditions by a stress-tolerant alfalfa microsymbiont and its complete genome sequence. J Biotechnol 263:52–54PubMedCrossRefGoogle Scholar
  25. Jozefkowicz C, Brambilla S, Frare R, Stritzler M, Puente M, Piccinetti C, Soto G, Ayub N (2017b) Microevolution rather than large genome divergence determines the effectiveness of legume-rhizobia symbiotic interaction under field conditions. J Mol Evol 85:79–83PubMedCrossRefGoogle Scholar
  26. Kawaharada Y, Kelly S, Nielsen MW, Hjuler CT, Gysel K, Muszyński A, Carlson RW, Thygesen MB, Sandal N, Asmussen MH, Vinther M, Andersen SU, Krusell L, Thirup S, Jensen KJ, Ronson CW, Blaise M, Radutoiu S, Stougaard J (2015) Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature 523:308–312PubMedCrossRefGoogle Scholar
  27. Keller M, Roxlau A, Weng WM, Schmidt M, Quandt J, Niehaus K, Jording D, Arnold W, Pühler A (1995) Molecular analysis of the Rhizobium meliloti mucR gene regulating the biosynthesis of the exopolysaccharides succinoglycan and galactoglucan. Mol Plant Microbe Interact 8:267–277PubMedCrossRefGoogle Scholar
  28. Kneen BE, LaRue TA (1983) Congo red absorption by Rhizobium leguminosarum. Appl Environ Microbiol 45:340–342PubMedPubMedCentralGoogle Scholar
  29. López SMY, Molina Sánchez MD, Pastorino GN, Franco MEE, García NT, Balatti PA (2018) Nodulation and delayed nodule senescence: strategies of two Bradyrhizobium japonicum isolates with high capacity to fix nitrogen. Curr Microbiol 75:997–1005PubMedCrossRefGoogle Scholar
  30. Marketon MM, González JE (2002) Identification of two quorum-sensing systems in Sinorhizobium meliloti. J Bacteriol 184:3466–3475PubMedPubMedCentralCrossRefGoogle Scholar
  31. Martínez-Hidalgo P, Hirsch AM (2017) The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes 1:70–82CrossRefGoogle Scholar
  32. Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149:114–122PubMedPubMedCentralGoogle Scholar
  33. Ohyama T (2017) The role of legume-Rhizobium symbiosis in sustainable agriculture. In: Sulieman S, Tran LS (eds) Legume nitrogen fixation in soils with low phosphorus availability. Springer, Cham, pp 1–20Google Scholar
  34. Pellock BJ, Teplitski M, Boinay RP, Bauer WD, Walker GC (2002) A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J Bacteriol 184:5067–5076PubMedPubMedCentralCrossRefGoogle Scholar
  35. Reuber TL, Walker GC (1993) Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Cell 74:269–280PubMedCrossRefGoogle Scholar
  36. Rinaudi L, Fujishige NA, Hirsch AM, Banchio E, Zorreguieta A, Giordano W (2006) Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Res Microbiol 157:867–875PubMedCrossRefGoogle Scholar
  37. Rinaudi LV, González JE (2009) The low-molecular-weight fraction of exopolysaccharide II from Sinorhizobium meliloti is a crucial determinant of biofilm formation. J Bacteriol 191:7216–7224PubMedPubMedCentralCrossRefGoogle Scholar
  38. Rinaudi LV, Giordano W (2010) An integrated view of biofilm formation in rhizobia. FEMS Microbiol Lett 304:1–11PubMedCrossRefGoogle Scholar
  39. Simon R, Hötte B, Klauke B, Kosier B (1991) Isolation and characterization of insertion sequence elements from gram-negative bacteria by using new broad-host-range, positive selection vectors. J Bacteriol 173:1502–1508PubMedPubMedCentralCrossRefGoogle Scholar
  40. Skorupska A, Janczarek M, Marczak M, Mazur A, Król J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 16(5):7CrossRefGoogle Scholar
  41. Sorroche F, Bogino P, Russo DM, Zorreguieta A, Nievas F, Morales GM, Hirsch AM, Giordano W (2018) Cell autoaggregation, biofilm formation, and plant attachment in a Sinorhizobium meliloti lpsB mutant. Mol Plant Microbe Interact 31:1075–1082PubMedCrossRefGoogle Scholar
  42. Sorroche F, Giordano W (2012) PCR analysis of expR gene regulating biosynthesis of exopolysaccharides in Sinorhizobium meliloti. Biochem Mol Biol Educ 40:108–111PubMedCrossRefGoogle Scholar
  43. Sorroche F, Rinaudi L, Zorreguieta A, Giordano W (2010) EPS II-dependent autoaggregation of Sinorhizobium meliloti planktonic cells. Curr Microbiol 61:465–470PubMedCrossRefGoogle Scholar
  44. Sorroche F, Spesia MB, Zorreguieta A, Giordano W (2012) A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Appl Environ Microbiol 78:4092–4101PubMedPubMedCentralCrossRefGoogle Scholar
  45. Vicario JC, Primo ED, Dardanelli MS, Giordano W (2015) Promotion of peanut growth by co-inoculation with selected strains of Bradyrhizobium and Azospirillum. J Plant Growth Regul 35:413–419CrossRefGoogle Scholar
  46. Wells DH, Chen EJ, Fisher RF, Long SR (2007) ExoR is genetically coupled to the ExoS-ChvI two-component system and located in the periplasm of Sinorhizobium meliloti. Mol Microbiol 64:647–664PubMedCrossRefGoogle Scholar
  47. Zhan HJ, Lee CC, Leigh JA (1991) Induction of the second exopolysaccharide (EPSb) in Rhizobium meliloti SU47 by low phosphate concentrations. J Bacteriol 173:7391–7394PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Biología MolecularUniversidad Nacional de Río CuartoRío CuartoArgentina
  2. 2.Department of Molecular, Cell and Developmental BiologyUniversity of California-Los AngelesLos AngelesUSA
  3. 3.Molecular Biology InstituteUniversity of California-Los AngelesLos AngelesUSA

Personalised recommendations