Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Endophytic fungi from the medicinal herb Euphorbia geniculata as a potential source for bioactive metabolites

Abstract

Many researchers proved that plant endophytes manage successful issues to synthesize active chemicals within plant cells. These bioactive compounds might support a range of plant defense mechanism against many pathogenic microorganisms. In this study, a total of 22 isolates representing 21 fungal species belonging to 15 fungal genera in addition to one variety were isolated and identified for the first time from Euphorbia geniculate plants. The genus Aspergillus was the most common fungus isolated from the studied plant. The fungus Isaria feline was recorded in both leaves and stem, while Aspergillus flavus, A. ochraceus, A. terreus var. terreus, Emercilla nidulans var. acristata, Macrophomina phaseolina colonized both stem and root. The isolated fungi showed antagonistic activities against six strains of plant pathogenic fungi viz., Eupenicillium brefeldianum, Penicillium echinulatum, Alternaria phragmospora, Fusarium oxysporum, Fusarium verticilloid, and Alternaria alternata in dual culture assay. The highest antagonistic activity fungal species (Aspergillus flavus, A. fumigatus, and Fusarium lateritium) and the lowest (Cladosprium herbarum, F. culomrum, and Sporotrichum thermophile) showed twining in their secondary metabolites especially terpens and alkaloids with that of their host E. geniculata. Three concentrations of (0.5, 1.0, and 2.0 mg/ml) of these secondary metabolites extracted by ethyl acetate and n-butanol from the above six endophytic fungal species were tested against three pathogenic fungi isolated from infected tomato plant (E. brefeldianum-EBT-1, P. echinulatum-PET-2, and A. phragmospora-APT-3), whereas these pathogens showed promising sensitivity to these fungal secondary metabolites. In conclusion, this is the first report on the isolation of endophytic fungi from E. geniculata and evaluation of their antifungal activity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abbasi AM, Saleem H, Aziz-ur-Rehman Riaz T, Ajaib M (2013) Determination of antioxidant activity and phytoconstituent screening of euphorbia heterophylla linn. Br J Pharm Res. 3(2):202–216

  2. Abdel-Mallek YA, Hemida KS, Bagy KMM (1995) Studies on fungi associated with tomato fruits and effectiveness of some commercial fungicides against three pathogens. Mycopathologia 130:109–116. https://doi.org/10.1007/bf01103459

  3. Abdel-Motaal FF, El-zayat AS, Kosaka Y, El-Sayed AM, Kashima R, Maeda Y, Nassar MSM, Ito SI (2010a) b) Antifungal activities of hyoscyamine and scopolamine against two major rice pathogens: Magnaporthe oryzae and Rhizoctonia solani. J Gen Plant Pathol 76:102–111

  4. Abdel-Motaal FF, Nassar MSM, EL-Zayat AS, EL-Sayed AM, Ito SI (2010b) Antifungal activity of endophytic fungi isolated from Egyptian henbane (Hyoscyamus muticus L). Pak J Bot 42(4):2883–2894

  5. Abdelrahman M, Abdel-Motaal F, El-Saved M, Jogaiah S, Shigyo M, Ito S, Tran LS (2016) Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. Sp. Cepa by target metabolite profiling. Plant Sci 245:128–138

  6. Albert S, Chauhan D, Pandya B, Padhiar A (2011) Screening of Trichoderma spp. as potential fungal partner in co-culturing with white rot fungi for efficient bio-pulping. GJBBR 6:95–101

  7. Ali A, Abdelrahman M, Radwan U, El-Zayat S, El- Sayed A (2018) Effect of Thermomyces fungal endophyte isolated from extreme hot desert adapted plant on heat stress tolerance of cucumber. App. Soil Eco 124:155–162

  8. Alwathnani AH, Perveen K (2012) Biological control of fusarium wilt of tomato by antagonist fungi and cyanobacteria. Afr J Biotechnol 11(5):1100–1105. https://doi.org/10.5897/ajb11.3361

  9. Anitha UKPG, Mythili S (2017) Antioxidant and hepatoprotective potentials of novel endophytic fungus Achaetomium sp., from Euphorbia hirta. Asian Pac J Trop Med 10(6):588–593. https://doi.org/10.1016/j.apjtm.2017.06.008

  10. Azevedo LJ, Pereira OJ, Araújo LW (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. EJB 3:40–65. https://doi.org/10.1007/s13369-018-3431-8

  11. Balouiri M, Sadiki M, Ibnsouda KS (2016) Methods for in vitro evaluating antimicrobial activity: a review. JPA 6:71–79

  12. Berbee LM (2001) The phylogeny of plant and animal pathogens in the Ascomycota. Physiol Mol Plant Pathol 59(4):165–187. https://doi.org/10.1006/pmpp.2001.0355

  13. Booth C (1977) Fusarium. Laboratory guide to the identification of major species. Common wealth Mycol Inst, Kew. https://doi.org/10.2307/3758956

  14. Carrol G (1988) Fungal endophytes in stem and leave: from latent pathogen to mutualistic symbiont. Ecology 69(1):2–9. https://doi.org/10.2307/1943154

  15. Christensen M, Raber BK (1978) Synoptic key to Aspergillus nidulans group species and related Emericella species. Trans Br Mycol Soc 71:177–191. https://doi.org/10.1016/s0007-1536(78)80097-7

  16. Corrado M, Rodrigues KF (2004) Antimicrobial evaluation of fungal extracts produced by endophytic strains of Phomopsis sp. J Basic Microbiol 44(2):157–160. https://doi.org/10.1002/jobm.200310341

  17. Costa WMPI, Maia CL, Cavalcanti AM (2012) Diversity of leaf endophytic fungi in mangrove plants of Northeast Brazil. Braz J of Microbiol. https://doi.org/10.1590/s1517-83822012000300044

  18. Cushnie TPT, Lamb JA (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356. https://doi.org/10.1016/j.ijantimicag.2005.12.002

  19. Dai C, Yu B, Li X (2008) Screening of endophytic fungi that promote the growth of Euphorbia pekinensis. Afr J Biotechnol 7(19):3505–3510

  20. Dokosi OB (1998) Herbs of Ghana book. Ghana Universities Press, Accra

  21. Ellis MB (1971) Dematiaceous hyphomycetes. Commonwealth Mycol Inst, Kew

  22. Ellis MB (1976) More dematiaceous hyphomycetes. Commonwealth Mycol Inst, Kew

  23. Emden VHJ (1970) Alternaria phragmospora nov. Spec Acta Bot Neerl 19(3):393–400. https://doi.org/10.1111/j.1438-8677.1970.tb00660.x

  24. Falodun A, Agbakwuru POE (2004) Phytochemical analysis and laxative activity of Euphorbia heterophylla Linn (Euphorbiaceae). Pak J Sci Ind Res 47(5):345–348

  25. Falodun A, Agbakwuru EOP, Ukoh GC (2003) Antibacterial activity of Euphorbia heterophylla Linn (family Euphorbiaceae). Pac J Sci Res 46(6):471–472

  26. Falodun A, Okunrobo OL, Uzoamaka N (2006) Phytochemical and Antiinflammatory evaluation of methanolic and aqueous extracts of Euphorbia heterophylla Linn (Euphorbiaceae). Afri J Biotech 5(5):529–531

  27. Firáková S, Šturdíková M, Múčková M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia (Bratisl) 62(3):251–257

  28. Fred-Jaiyesimi AA, Abo KA (2010) Phytochemical and Antimicrobial analysis of the crude extract, petroleum ether and chloroform fractions of Euphorbia heterophylla Linn Whole Plant. Pharmacognosy J 2(16):1–4. https://doi.org/10.1016/s0975-3575(10)80042-2

  29. Gao KF, Dai CC, Liu ZX (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4(13):1346–1351

  30. Giménez C, Cabrera R, Reina M, González-Coloma A (2007) Fungal endophytes and their role in plant protection. Curr Org Chem 1:707–720. https://doi.org/10.2174/138527207780598765

  31. Hipol MR (2012) Molecular identification and phylogenetic affinity of two growth promoting fungal endophytes of sweet potato (Ipomea batatas (L.) Lam.) from Baguio City, Philippines. Electron J Biol 8(3):57–61. https://doi.org/10.1016/j.jpha.2015.11.005

  32. James O, Friday E (2010) Phytochemical composition, bioactivity and wound healing potential of Euphorbia Heterophylla (Euphorbiaceae) leaf extract. IJPBR 1(1):54–63

  33. Jinantana J, Sariah M (1998) Potential for biological control of Sclerotium foot rot of Chilli by Trichoderma spp. Pertanika J Trop Agric Sci 21(1):1–10

  34. Kayim M, Yones MA, Endes A (2018) Biocontrol of Alternaria alternata causing leaf spot disease on faba bean (Vicia faba L.) using some Trichoderma harzianum ısolates under in vitro condition. Harran Tarım ve Gıda Bilimleri Derg 22(2):169–178

  35. Khan A, Lee IJ (2013) Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol. https://doi.org/10.1186/1471-2229-13-86

  36. Kim KW, Sang KH, Woo KS, Park SM, Paul CN, Yu HS (2007) Six species of penicillium associated with blue mold of grape. Mycobiology 35(4):180–185

  37. Kumar S, Malhotra R, Kumar D (2010) Euphorbia hirta: its chemistry, traditional and medicinal uses, and pharmacological activities. Pharmacogn Rev 4:58–61. https://doi.org/10.4103/0973-7847.65327

  38. Kusari S, Lamshoft M, Zuhlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71(2):159–162. https://doi.org/10.1021/np070669k

  39. Li KR, Rinaldi GM (1999) In vitro antifungal activity of nikkomycin Z in combination with fluconazole or itraconazole. Antimicrob Agents Chemother 43:1401–1405. https://doi.org/10.1128/aac.43.6.1401

  40. Liu HC, Zou XW, Lu H, Tan XR (2001) Antifungal activity of Artemisia annua endophyte cultures against phytopathogenic fungi. J Biotechnol 88:277–282

  41. Mérillon MJ, Ramawat GK (2017) Fungal metabolites. In: Belozerskaya AT, Gessler NN, Aver’yanov AA (eds) Melanin pigments of fungi. Springer International Publishing, Berlin, pp 263–291. https://doi.org/10.1007/978-3-319-25001-4_29

  42. Moubasher AH (1993) Soil fungi in Qatar and other Arab countries. The scientific and applied research center. University of Qatar, Doha

  43. Okoli IR, Turay AA, Mensah KJ, Aigbe OA (2009) Phytochemical and antimicrobial properties of four herbs from Edo state, Nigeria. Rep Opinion 1(5):67–73

  44. Owen LN, Hundley N (2004) Endophytes-the chemical synthesizers inside plants. Sci Prog 87:79–99

  45. Pelaez F, Collado J, Arenal F, Basilio A, Cabello A, Díez TM, Garcia BJ, González del Val A, González V, Gorrochategui J, Hernández P, Martín I, Platas G, Vicente F (1998) Endophytic fungi from plants living on gypsum soils as a source of secondary metabolites with antimicrobial activity. Mycol Res 102:755–761. https://doi.org/10.1017/s0953756297005662

  46. Petrini O, Sieber T, Toti L, Viret O (1993) Ecology, metabolite production and substrate utilization in endophytic fungi. Nat Toxins 1:185–196. https://doi.org/10.1002/nt.2620010306

  47. Pitt IJ (1979) The genus Penicillium and its telemorphic stato Eupenicillium and Talaromyces. Academic Press, London

  48. Pitt IJ (1985) A laboratory guide to common Pencillium species. Commonwealth Scientific and Industrial Research Organization. Division of food research, North Ryde

  49. Rao A, Ramakrishna N, Arunachalam S, Sathiavelu M (2018) Isolation, screening and optimization of laccase-producing endophytic fungi from Euphorbia milii. AJSE 44(1):51–64

  50. Raper KB, Fennell DI (1965) The genus Aspergillus. Williams & Wilkins Co, Baltimore

  51. Raper KB, Thom C (1949) A manual of the Penicillia. Baillière, Tindall and Cox, London

  52. Rodriguez E, Twers NHG, Mitchell CJ (1976) Biological activities of sesquiterpene Lactones. Phytochemistry 15:1573–1580. https://doi.org/10.1016/s0031-9422(00)97430-2

  53. Rodriguez JR, White JF Jr, Arnold EA, Redman SR (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330. https://doi.org/10.1111/j.1469-8137.2009.02773.x

  54. Rojas A, Hernandezb L, Pereda-Miranda R, Mata R (1992) Screening for anti-icrubial activity of crude drug extracts and pure natural products from Mexican medicinal plants. J Ethnophurmacol 35:275–283

  55. Rossman YA, Tulloss ER, O’Dell ET, Thorn GR (1998) Protocols for an all taxa biodiversity inventory of fungi in Costa Rican conservation area. Parkway publishers Inc, Boone. https://doi.org/10.2307/3761287

  56. Schulthess MF, Faeth HS (1998) Distribution, abundances, and associations of the endophytic fungal community of Arizona fescue (Festuca arizonica). Mycologia 90:569–578. https://doi.org/10.2307/3761215

  57. Schulz B, Boyle C, Draeger S, Römmert KA, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106(9):996–1004. https://doi.org/10.1017/s0953756202006342

  58. Singh J, Tripathi NN (1999) Inhibition of storage fungi of blackgram Vigna mungo by some essential oils. Flavour Fragr J 14(1):1–4. https://doi.org/10.1002/(sici)1099-1026(199901/02)14:1%3c1:aid-ffj735%3e3.0.co;2-r

  59. Stone JK, Polishook JD, White JF (2004) Endophytic fungi. In: Mueller MG, Bills FG, Foster SM (eds) Biodiversity of fungi, inventory and monitoring methods. Elsevier Academic Press, San Diego, pp 241–270

  60. Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5(6):535–544. https://doi.org/10.1016/S1286-4579(03)00073-X

  61. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbial Mol Biol Rev 67(4):491–502. https://doi.org/10.1128/mmbr.67.4.491-502.2003

  62. Strobel GA, Hess WM, Ford E, Sidhu RS, Yang X (1996) Taxol from fungal endophytes and the issue of biodiversity. J Ind Microbiol 17(5–6):417–423. https://doi.org/10.1007/bf01574772

  63. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

  64. Tan XR, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459. https://doi.org/10.1039/b100918o

  65. Visweswari G, Christopher R, Rajendra W (2013) Phytochemical screening of active secondary metabolites present in Withania somnifera root: role in traditional medicine. IJPSR 4(7):2770–2776

  66. Yao J, Moellering R (1995) Antibacterial agents. In: In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (eds) Manual of clinical microbiology. ASM Press, Washington, Manual of Clinical Microbiology, pp 1281–1290

  67. Yeşilada E, Sezik E, Honda G, Takaishi Y, Takeda Y, Tanaka T (1999) Traditional medicine in Turkey IX, folk medicine in North West Anatolia. J Ethnopharmacol 64(3):195–201

  68. Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, Sun P, Qin L (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165:437–449. https://doi.org/10.1016/j.micres.2009.11.009

  69. Zhang WH, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771. https://doi.org/10.1039/b609472b

Download references

Acknowledgements

We are grateful to the director of the Unit of Environmental Studies and Development (UESD) at Aswan University for providing facilities in the unit laboratories to accomplish this work. We are very thankful to the researcher Mr. Rasheed Zidan for his help in the statistical analysis.

Author information

Correspondence to Fatma F. Abdel-Motaal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamel, N.M., Abdel-Motaal, F.F. & El-Zayat, S.A. Endophytic fungi from the medicinal herb Euphorbia geniculata as a potential source for bioactive metabolites. Arch Microbiol 202, 247–255 (2020). https://doi.org/10.1007/s00203-019-01740-x

Download citation

Keywords

  • Euphorbia geniculata
  • Endophytes
  • Secondary metabolites
  • Antifungal activity