Skip to main content

Advertisement

Log in

Effect of static magnetic field (200 mT) on biofilm formation in Pseudomonas aeruginosa

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Several studies have investigated the effects of ionizing and non-ionizing radiations on microorganisms. However, the interaction between the magnetic field radiations and bacteria is less studied. The aim of our study was to study the effect of static magnetic field on the biofilm formation in Pseudomonas aeruginosa and its isogenic sod mutants. Our results revealed that the exposure to the static magnetic field (200 mT) increases significantly the swarming in the wild strain. The fliC gene expression did not show significant difference after 6 h exposure of the wild-type strain. The release of some compounds of the biofilm matrix such as rhamnolipids has been considerably enhanced after 6 h of exposure in the wild type. On the other hand, the pyocyanin and biofilm production was increased significantly in all strains compared to controls. Furthermore, our results revealed that the biofilm formation was confirmed by the pslA and ppyR gene expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson GG, O’Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105

    CAS  PubMed  Google Scholar 

  • Arai H (2011) Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomonas aeruginosa. Front Microbiol 2:103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bellingham NF, Morgan JAW, Saunders JR, Winstanlley C (2001) Flagellin gene sequence variation in the genus Pseudomonas. Syst Appl Microbiol 24:157–165

    CAS  PubMed  Google Scholar 

  • Borlee BR, Goldman A, Murakami K, Samudrala R, Wozniak DJ, Parsek MR (2010) Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75:827–842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    CAS  PubMed  Google Scholar 

  • Caiazza NC, Shanks RM, O'Toole GA (2005) Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol 187:7351–7361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ceri H, Olson ME, Turner RJ (2010) Needed, new paradigms in antibiotic development. Expert Opin Pharmacother 11:1233–1237

    CAS  PubMed  Google Scholar 

  • Chandrasekaran EV, Bemiller JN (1980) Constituent analysis of glycosaminoglycans. In: Whistler RL, Wolfrom ML (eds) Methods in carbohydrate chemistry. Academic Press, New York, pp 89–96

    Google Scholar 

  • Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dekimpe V, Déziel E (2009) Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiology 155(3):712–723

    CAS  PubMed  Google Scholar 

  • Déziel E, Lépine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013

    PubMed  Google Scholar 

  • Dos Santos LO, Gonzales TA, Úbeda BT, Alegre RM (2012) Glutathione production using magnetic fields generated by magnets. Braz Arch Biol Technol 55:921–926

    Google Scholar 

  • El May A, Snoussi S, Ben Miloud N, Maatouk I, Abdelmelek H, Ben Aissa R, Landoulsi A (2009) Effects of static magnetic fieldon cell growth, viability and differential gene expression in Salmonella. Foodborn Pathog Dis 6:547–552

    CAS  Google Scholar 

  • Essar DW, Eberly L, Hadero A, Crawford IP (1990) Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172:884–900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Favre-Bonte S, Kohler T, Van Delden C (2003) Biofilm formation by Pseudomonas aeruginosa: role of the C4-AHL cell-to-cell signal and inhibition by azithromycin. J Antimicrob Chemother 52:598–604

    CAS  PubMed  Google Scholar 

  • Filipic J, Kraigher B, Tepus B, Kokol V, Mandic-Mulec I (2012) Effect of Low-density magnetic fields on the growth and activities of wastewater bacteria Escherichia coli and Pseudomonas putida. Bioresour Technol 120:225–232

    CAS  PubMed  Google Scholar 

  • Friedman L, Kolter R (2004) Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186:4457–4465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghadaksaz A, Fooladi AAI, Hosseini HM, Amin M (2014) The prevalence of some Pseudomonas virulence genes related to biofilm formation and alginate production among clinical isolates. J Appl Biomed 13:61–68

    Google Scholar 

  • Grant CCR, Konkel ME, Cieplak JW, Tompkins LS (1993) Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures. Infect Immun 30:1764–1771

    Google Scholar 

  • Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11:1034–1043

    CAS  PubMed  Google Scholar 

  • Hanini R, Chatti A, Ghorbel SB, Landoulsi A (2017) Role of sod gene in response to static magnetic fields in Pseudomonas aeruginosa. Curr Microbiol 74(8):930–937

    CAS  PubMed  Google Scholar 

  • Iiyama K, Chieda Y, Lee JM, Kusakabe T, Yasunaga-Aoki C, Shimizu S (2007) Effect of superoxide dismutase gene inactivation on virulence of Pseudomonas aeruginosa PAO1 toward the silkworm Bombyx mori. Appl Environ Microbiol 73(5):1569–1575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Intarak N, Muangsombut V, Vattanaviboon P, Stevens MP, Korbsrisate S (2014) Growth, motility and resistance to oxidative stress of the melioidosis pathogen Burkholderia pseudomallei are enhanced by epinephrine. Pathog Dis 72(1):24–31

    CAS  PubMed  Google Scholar 

  • Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ (2004) Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 186:4466–4475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim E-J, Sabra W, Zeng A-P (2003) Iron deficiency leads to inhibition of oxygen transfer and enhanced formation of virulence factors in cultures of Pseudomonas aeruginosa PAO1. Microbiology 149:2627–2634

    CAS  PubMed  Google Scholar 

  • Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A, Mølin S, Tolker-Nielsen T (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524

    CAS  PubMed  Google Scholar 

  • Köhler T, Curty LK, Barja F, Van Delden C, Pechére JC (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996

    PubMed  PubMed Central  Google Scholar 

  • Kurachi M (1958) Studies on the biosynthesis of pyocyanine. (II): isolation and determination of pyocyanine. Bull Inst Chem Res Kyoto Univ 36:174–187

    Google Scholar 

  • Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5:e1000354

    PubMed  PubMed Central  Google Scholar 

  • Matsukawa M, Greenberg EP (2004) Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol 186:4449–4456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montie TC, Doyle-Huntzinger D, Craven RC, Holder IA (1982) Loss of virulence associated with absence of flagellum in an isogenic mutant of Pseudomonas aeruginosa in the burned-mouse model. Infect Immun 38:1296–1298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murray TS, Kazmierczak BI (2006) FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J Bacteriol 188:6995–7004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nadell CD, Drescher K, Wingreen NS, Bassler BL (2015) Extracellular matrix structure governs invasion resistance in bacterial biofilms. ISME J 9:1700–1709

    PubMed  PubMed Central  Google Scholar 

  • O'Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    CAS  PubMed  Google Scholar 

  • Pacheco GJ, Reis RS, Fernandes ACLB, da Rocha SLG, Pereira MD, Perales J, Freire DMG (2012) Rhamnolipid production: effect of oxidative stress on virulence factors and proteome of Pseudomonas aeruginosa PA1. Appl Microbiol Biotechnol 95:1519–1529

    CAS  PubMed  Google Scholar 

  • Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Potera C (1999) Forging a link between biofilm and disease. Science 283:1837–1839

    CAS  PubMed  Google Scholar 

  • Ramos I, Dietrich LEP, Price-Whelan A, Newman DK (2010) Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales. Res Microbiol 161(3):187–191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryder C, Byrd M, Wozniak DJ (2007) Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10:644–648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sabra W, Kim E-J, Zeng A-P (2002) Physiological responses of Pseudomonas aeruginosa PAO1 to oxidative stress in controlled microaerobic and aerobic cultures. Microbiol 148:3195–3202

    CAS  Google Scholar 

  • Spangenberg C, Fislage R, Sierralta W, Tiimmler B, Ramling Ute (1995) Comparison of type IV-pilin genes of Pseudomonas aeruginosa of various habitats has uncovered a novel unusual sequence. FEMS Microbiol Lett 125:265–274

    CAS  PubMed  Google Scholar 

  • Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40(2):175–179

    CAS  PubMed  Google Scholar 

  • Sutherland IW (2001) The biofilm matrix—an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227

    CAS  PubMed  Google Scholar 

  • Weger LA, Van der Vlught CIM, Wijfjes AHM, Bakker PAHM, Schippers B, Lugtenberg B (1987) Flagella of a plant-growth-stimulating Pseudomonas fluorescens are required for colonization of potato roots. J Bacteriol 169:2769–2773

    PubMed  PubMed Central  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr Iiyama Kazuhiro of the Fukuoka University of Agriculture for providing bacterial strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanini Raouia.

Additional information

Communicated by Jorge Membrillo-Hernández.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raouia, H., Hamida, B., Khadidja, A. et al. Effect of static magnetic field (200 mT) on biofilm formation in Pseudomonas aeruginosa. Arch Microbiol 202, 77–83 (2020). https://doi.org/10.1007/s00203-019-01719-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-019-01719-8

Keywords

Navigation