Advertisement

Intra-amoebic localization of Arcobacter butzleri as an endocytobiont of Acanthamoeba castellanii

  • G. MedinaEmail author
  • P. Leyán
  • C. Viera da Silva
  • S. Flores-Martin
  • C. Manosalva
  • H. Fernández
Short Communication

Abstract

Acanthamoeba castellanii is a free-living amoeba found mainly in humid environments and Arcobacter butzleri is an emerging zoonotic pathogen, both can establish in vitro endosymbiotic relationships in the absence of bacterial replication. We analyzed the localization of A. butzleri within A. castellanii establishing their association with endoplasmic reticulum vesicles and mitochondria. Through confocal microscopy, we observed that during the early stages of endosymbiosis, there is not colocalization between amoebic vacuoles containing A. butzleri and mitochondria or ER vesicles of A. castellanii. Considering that energy production of this bacterium occurs via metabolism of amino acids or the tricarboxylic acid cycle, these results contribute to explain the absence of bacterial replication, since A. butzleri would not have access to the nutrients found in endoplasmic reticulum vesicles and mitochondria. In addition, we observe that A. butzleri induces significantly the actin polymerization of A. castellanii during the early stages of endosymbiosis.

Keywords

Acanthamoeba Arcobacter Endosymbiosis Confocal microscopy 

Notes

Acknowledgements

This work was supported by grants Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) 1110202, Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) AT 24121322 from Chile and Fondo de Equipamiento FEQUIP2018-PL-06 Vicerrectoría de Investigación y Posgrado Universidad Católica de Temuco. The authors would like to thank Professor Ph.D. Guillermo Pérez-Pérez (New York University Langone Medical Center) for their scientific advices and critical review.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Almsherqi Z, Hyde S, Ramachandran M, Deng Y (2008) Cubic membranes: a structure-based design for DNA uptake. J R Soc Interface 5:1023–1029.  https://doi.org/10.1098/rsif.2007.1351 CrossRefGoogle Scholar
  2. Burdíková Z, Čapek M, Ostašov P et al (2010) Testate amoebae examined by confocal and two-photon microscopy: implications for taxonomy and ecophysiology. Microsc Microanal 16:735–746.  https://doi.org/10.1017/S1431927610094031 CrossRefGoogle Scholar
  3. Collado L, Figueras MJ (2011) Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter. Clin Microbiol Rev 24:174–192.  https://doi.org/10.1128/CMR.00034-10 CrossRefGoogle Scholar
  4. Delafont V, Brouke A, Bouchon D et al (2013) Microbiome of free-living amoebae isolated from drinking water. Water Res 47:6958–6965.  https://doi.org/10.1016/j.watres.2013.07.047 CrossRefGoogle Scholar
  5. Evstigneeva A, Raoult D, Karpachevskiy L, La Scola B (2009) Amoeba co-culture of soil specimens recovered 33 different bacteria, including four new species and Streptococcus pneumoniae. Microbiology 155:657–664.  https://doi.org/10.1099/mic.0.022970-0 CrossRefGoogle Scholar
  6. Fera MT, Maugeri TL, Gugliandolo C et al (2008) Induction and resuscitation of viable nonculturable Arcobacter butzleri cells. Appl Environ Microbiol 74:3266–3268.  https://doi.org/10.1128/AEM.00059-08 CrossRefGoogle Scholar
  7. Fernández H, Villanueva MP, Medina G (2012) Endosymbiosis of Arcobacter butzleri in Acanthamoeba castellanii. Rev Argent Microbiol 44:133Google Scholar
  8. Garcia-Sanchez AM, Ariza C, Ubeda JM et al (2013) Free-living amoebae in sediments from the Lascaux Cave in France. Int J Speleol 42:9–13.  https://doi.org/10.5038/1827-806X.42.1.2 CrossRefGoogle Scholar
  9. Gilson PR, Yu X-C, Hereld D et al (2003) Two Dictyostelium orthologs of the prokaryotic cell division protein FtsZ localize to mitochondria and are required for the maintenance of normal mitochondrial morphology. Eukaryot Cell 2:1315–1326.  https://doi.org/10.1128/EC.2.6.1315-1326.2003 CrossRefGoogle Scholar
  10. Kakley MR, Velle KB, Fritz-Laylin LK (2018) Relative quantitation of polymerized actin in suspension cells by flow cytometry. Bio-protocol.  https://doi.org/10.21769/bioprotoc.3094 Google Scholar
  11. Khan NA, Siddiqui R (2014) Predator vs aliens: bacteria interactions with Acanthamoeba. Parasitology 141:869–874.  https://doi.org/10.1017/S003118201300231X CrossRefGoogle Scholar
  12. Medina G, Flores-Martin S, Fonseca B et al (2014) Mechanisms associated with phagocytosis of Arcobacter butzleri by Acanthamoeba castellanii. Parasitol Res 113:1933–1942.  https://doi.org/10.1007/s00436-014-3842-8 CrossRefGoogle Scholar
  13. Medina G, Neves P, Flores-Martin S et al (2019) Transcriptional analysis of flagellar and putative virulence genes of Arcobacter butzleri as an endocytobiont of Acanthamoeba castellanii. Arch Microbiol.  https://doi.org/10.1007/s00203-019-01678-0 Google Scholar
  14. Molofsky AB, Swanson MS (2004) Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol 53:29–40CrossRefGoogle Scholar
  15. Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100Google Scholar
  16. Parker CT, Miller WG (2011) Campylobacter and Arcobacter. In: Fratamico P, Liu Y, Kathariou S (eds) Genomes of foodborne and waterborne pathogens. ASM Press, Washington, DC, p 49–65.  https://doi.org/10.1128/9781555816902.ch4 Google Scholar
  17. Pizarro-Cerdá J, Méresse S, Parton RG et al (1998) Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect Immun 66:5711–5724Google Scholar
  18. Ramees TP, Dhama K, Karthik K et al (2017) Arcobacter: an emerging food-borne zoonotic pathogen, its public health concerns and advances in diagnosis and control—a comprehensive review. Vet Q 37:136–161.  https://doi.org/10.1080/01652176.2017.1323355 CrossRefGoogle Scholar
  19. Roy CR, Tilney LG (2002) The road less traveled: transport of Legionella to the endoplasmic reticulum. J Cell Biol 158:415–419.  https://doi.org/10.1083/jcb.200205011 CrossRefGoogle Scholar
  20. Siddiqui R, Khan NA (2012) Biology and pathogenesis of Acanthamoeba. Parasites Vectors 5:6.  https://doi.org/10.1186/1756-3305-5-6 CrossRefGoogle Scholar
  21. Tsaousis AD, Nývltová E, Šuták R et al (2014) A nonmitochondrial hydrogen production in Naegleria gruberi. Genome Biol Evol 6:792–799.  https://doi.org/10.1093/gbe/evu065 CrossRefGoogle Scholar
  22. Villanueva MP, Medina G, Fernández H (2016) Arcobacter butzleri survives within trophozoite of Acanthamoeba castellanii. Rev Argent Microbiol.  https://doi.org/10.1016/j.ram.2015.12.003 Google Scholar
  23. Wojtkowska M, Buczek D, Stobienia O et al (2015) The TOM complex of amoebozoans: the cases of the amoeba Acanthamoeba castellanii and the slime mold Dictyostelium discoideum. Protist 166:349–362.  https://doi.org/10.1016/J.PROTIS.2015.05.005 CrossRefGoogle Scholar
  24. Zhang X, Zhuchenko O, Kuspa A, Soldati T (2016) Social amoebae trap and kill bacteria by casting DNA nets. Nat Commun 7:10938.  https://doi.org/10.1038/ncomms10938 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Health Sciences, Department of Diagnostic Processes and EvaluationUniversidad Católica de TemucoTemucoChile
  2. 2.Institute of Biomedical Sciences, Universidade Federal de UberlândiaUberlândiaBrazil
  3. 3.Institute of Clinical Microbiology,Faculty of MedicineUniversidad Austral de ChileValdiviaChile
  4. 4.Institute of Pharmacy, Faculty of ScienceUniversidad Austral de ChileValdiviaChile

Personalised recommendations