Effect of Fe on inorganic polyphosphate level in autotrophic and heterotrophic cells of Rhodospirillum rubrum

  • Tatiana KulakovskayaEmail author
  • Anton Zvonarev
  • Kestutis Laurinavichius
  • Galina Khokhlova
  • Mikhail Vainshtein
Short Communication


Inorganic polyphosphate is involved in metal homeostasis in microorganisms. The aim of the study was to reveal differences in polyphosphate metabolism of Rhodospirillum rubrum under autotrophic and heterotrophic cultivation in the presence of Fe (2.3 mg Fe3+ L−1) and without Fe (traces). Heterotrophic conditions without Fe resulted in cell lysis and low biomass yield. High polyphosphate content and low exopolyphosphatase activity were observed in the cells cultivated autotrophically in the presence of Fe. The cells grown heterotrophically in the presence of Fe contained more phosphate and low-molecular polyphosphate; on the contrary, the content of the high molecular polyphosphate decreased in parallel with the increase in exopolyphosphatase activity. The possible involvement of Pi and polyphosphate to the formation of Fe-containing inclusions is discussed.


Rhodospirillum rubrum Polyphosphate Polyphosphatase Fe Autotrophic growth Heterotrophic growth 


Supplementary material

203_2019_1697_MOESM1_ESM.pdf (537 kb)
Supplementary material 1 (PDF 536 kb)


  1. Achbergerová L, Nahálka J (2011) Polyphosphate—an ancient energy source and active metabolic regulator. Microb Cell Fact 10:63. CrossRefGoogle Scholar
  2. Albi T, Serrano A (2016) Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer. World J Microbiol Biotechnol 32(2):27. CrossRefGoogle Scholar
  3. Andreeva NA, Okorokov LA (1993) Purification and characterization of highly active and stable polyphosphatase from Saccharomyces cerevisiae cell envelope. Yeast 9:127–139CrossRefGoogle Scholar
  4. Andreeva N, Ryazanova L, Dmitriev V, Kulakovskaya T, Kulaev I (2014) Cytoplasmic inorganic polyphosphate participates in the heavy metal tolerance of Cryptococcus humicola. Folia Microbiol (Praha) 59:381–389. CrossRefGoogle Scholar
  5. Ariskina EV, Vatsurina AV, Suzina NE, Gavrish EYu (2004) Cobalt- and chromium-containing inclusions in bacterial cells. Microbiology 73:159–162CrossRefGoogle Scholar
  6. Aschar-Sobbi R, Abramov AY, Diao C, Kargacin ME, Kargacin GJ, French RJ, Pavlov E (2008) High sensitivity, quantitative measurements of polyphosphate using a new DAPI-based approach. J Fluoresc 18(5):859–866. CrossRefGoogle Scholar
  7. Baumgartner J, Morin G, Menguy N, Perez Gonzalez T, Widdrat M, Cosmidis J, Faivre D (2013) Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates. Proc Natl Acad Sci USA 37:14883–14888. CrossRefGoogle Scholar
  8. Baykov AA, Evtushenko OA, Avaeva SM (1988) A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal Biochem 171(2):266–270CrossRefGoogle Scholar
  9. Bollyn J, Nijsen M, Baken S, Joye I, Waegeneers N, Cornelis G, Smolders E (2016) Polyphosphates and fulvates enhance environmental stability of PO4-bearing colloidal ironoxyhydroxides. J Agric Food Chem 64(45):8465–8473CrossRefGoogle Scholar
  10. Clotet J (2017) Polyphosphate: popping up from oblivion. Curr Genet 63:15–18CrossRefGoogle Scholar
  11. Faivre D, Godec TU (2015) From bacteria to mollusks: the principles underlying the biomineralization of iron oxide materials. Angew Chem Int Ed Engl 54(16):4728–4747. CrossRefGoogle Scholar
  12. Francisco R, de Abreu P, Plantz BA, Schlegel VL, Carvalho RA, Morais PV (2011) Metal-induced phosphate extracellular nanoparticulate formation in Ochrobactrumtritici 5bvl1. J Hazard Mater 198:31–39. CrossRefGoogle Scholar
  13. Gautam LK, Sharma P, Capalash N (2019) Bacterial polyphosphate kinases revisited: role in pathogenesis and therapeutic potential. Curr Drug Target 20(3):292–301. CrossRefGoogle Scholar
  14. Gray MJ, Jakob U (2015) Oxidative stress protection by polyphosphate-new roles for an old player. Curr Opin Microbiol 24:1–6. CrossRefGoogle Scholar
  15. Hu P, Liu J, Wu L, Zou L, Li YY, Xu ZP (2019) Simultaneous release of polyphosphate and iron-phosphate from waste activated sludge by anaerobic fermentation combined with sulfate reduction. Bioresour Technol 271:182–189. CrossRefGoogle Scholar
  16. Ivanovsky RN, Krasilnikova EN, Berg IA (1997) A proposed citramalate cycle for acetate assimilation in the purple nonsulfur bacterium Rhodospirillum rubrum. FEMS Microbiol Lett 153:399–404CrossRefGoogle Scholar
  17. Khokhlova G, Abashina T, Belova N, Panchelyuga V, Petrov A, Abreu F, Vainshtein M (2018) Effects of combined magnetic fields on bacteria Rhodospirillum rubrum VKM B-1621. Bioelectromagnetics 39(6):485–490. CrossRefGoogle Scholar
  18. Kulaev IS, Shadi A, Mansurova SE (1974) Polyphosphates in the phototrophic bacterium Rhodospirillum rubrum under various culture conditions. Biokhimiya (Moscow) 39:656–661Google Scholar
  19. Kulakovskaya T (2018) Inorganic polyphosphates and heavy metal resistance in microorganisms. World J Microbiol Biotechnol 34:139. CrossRefGoogle Scholar
  20. Lai YC, Liang CM, Hsu SC, Hsieh PH, Hung CH (2017) Polyphosphate metabolism by purple non-sulfur bacteria and its possible application on photo-microbial fuel cell. J Biosci Bioeng 123(6):722–730. CrossRefGoogle Scholar
  21. Moon JW, Rawn CJ, Rondinone AJ, Love LJ, Roh Y, Everett SM, Lauf RJ, Phelps TJ (2010) Large-scale production of magnetic nanoparticles using bacterial fermentation. J Ind Microbiol Biotechnol 37(10):1023–1031. CrossRefGoogle Scholar
  22. Nagasaka S, Yoshimura E (2008) External iron regulates polyphosphate content in the acidophilic, thermophilic alga Cyanidium caldarium. Biol Trace Elem Res 125(3):286–289. CrossRefGoogle Scholar
  23. Narancic T, Scollica E, Kenny ST, Gibbons H, Carr E, Brennan L, Cagney G, Wynne K, Murphy C, Raberg M, Heinrich D, Steinbüchel A, O’Connor KE (2016) Understanding the physiological roles of polyhydroxybutyrate (PHB) in Rhodospirillum rubrum S1 under aerobic chemoheterotrophic conditions. Appl Microbiol Biotechnol 100(20):8901–8912. CrossRefGoogle Scholar
  24. Narancic T, Scollica E, Cagney G, O’Connor KE (2018) Three novel proteins co-localize with polyhydroxybutyrate (PHB) granules in Rhodospirillum rubrum S1. Microbiology 164(4):625–634. CrossRefGoogle Scholar
  25. Oelze J, Weaver P (1982) The adjustment of photosynthetically grown cells of Rhodospirillum rubrum to aerobic light conditions. Arch Microbiol 79:108–121Google Scholar
  26. Rao NN, Gómez-García MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78:605–647CrossRefGoogle Scholar
  27. Reusch RN (2012) Physiological importance of poly-(R)-3-hydroxybutyrates. Chem Biodivers 9(11):2343–2366. CrossRefGoogle Scholar
  28. Roh Y, Vali H, Phelps TJ, Moon JW (2006) Extracellular synthesis of magnetite and metal-substituted magnetite nanoparticles. J Nanosci Nanotechnol 6(11):3517–3520CrossRefGoogle Scholar
  29. Schon G, Biedermann M (1972) Synthesis of volatile acids by fermentation of pyruvate and fructose in anaerobic darkcultures of Rhodospirillum rubrum (in German). Arch Mikrobiol 85:77–90CrossRefGoogle Scholar
  30. Schultz J, Weaver P (1982) Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata. J Bacteriol 149:181–190Google Scholar
  31. Serafim LS, Lemos OC, Levantesi C, Tandoi V, Santos H, Reis MA (2002) Methods for detection and visualization of intracellular polymers stored by polyphosphate-accumulating microorganisms. J Microbiol Methods 51:1–18CrossRefGoogle Scholar
  32. Serrano A, Pérez-Castiñeira JR, Baltscheffsky M, Baltscheffsky H (2007) H+-PPases: yesterday, today and tomorrow. IUBMB Life 59(2):76–83CrossRefGoogle Scholar
  33. Seufferheld M, Lea CR, Vieira M, Oldfield E, Docampo R (2004) The H (+)-pyrophosphatase of Rhodospirillum rubrum is predominantly located in polyphosphate-rich acidocalcisomes. J Biol Chem 279(49):51193–51202CrossRefGoogle Scholar
  34. Vainshtein M, Suzina N, Sorokin V (1997) A new type of magnet-sensitive inclusions in cells of photosynthetic purple bacteria. Syst Appl Microbiol 20(2):182–186. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.G.K. Skryabin Institute of Biochemistry and Physiology of MicroorganismsFRC Pushchino Scientific Center for Biological Research of the Russian Academy of SciencesPushchinoRussia

Personalised recommendations