Archives of Microbiology

, Volume 201, Issue 9, pp 1285–1293 | Cite as

An endophytic Kocuria palustris strain harboring multiple arsenate reductase genes

  • Tania Zacaria Vital
  • Brenda Román-Ponce
  • Flor N. Rivera Orduña
  • Paulina Estrada de los Santos
  • M. Soledad Vásquez-Murrieta
  • Yue Deng
  • Hong Li Yuan
  • En Tao WangEmail author
Original Paper


Aiming at revealing the arsenic (As) resistance of the endophytic Kocuria strains isolated from roots and stems of Sphaeralcea angustifolia grown at mine tailing, four strains belonging to different clades of Kocuria based upon the phylogeny of 16S rRNA genes were screened for minimum inhibitory concentration (MIC). Only the strain NE1RL3 was defined as an As-resistant bacterium with MICs of 14.4/0.0125 mM and 300/20.0 mM for As3+ and As5+, respectively, in LB/mineral media. This strain was identified as K. palustris based upon analyses of cellular chemical compositions (cellular fatty acids, isoprenoides, quinones, and sugars), patterns of carbon source, average nucleotide identity of genome and digital DNA–DNA relatedness. Six genes coding to enzymes or proteins for arsenate reduction and arsenite-bumping were detected in the genome, demonstrating that this strain is resistant to As possibly by reducing As5+ to As3+, and then bumping As3+ out of the cell. However, this estimation was not confirmed since no arsenate reduction was detected in a subsequent assay. This study reported for the first time the presence of phylogenetically distinct arsenate reductase genes in a Kocuria strain and evidenced the possible horizontal transfer of these genes among the endophytic bacteria.


Endophyte Genome Arsenate reductase Polyphasic identification 



This study was financially supported by the project SIP20171259 authorized by Instituto Politecnico Nacional (IPN), Mexico. TZV received scholarships of CONACyT of Mexico and PIFI (IPN) for her study and staying 2 months in the laboratory of Dr. Yuan. FNRO, PES, MSVM and ETW thank for the scholarships of SNI authorized by CONACyT, EDI and COFAA PIFI (IPN) for her study and staying 2 months in the laboratory of Dr. Yuan. FNRO, PES, MSVM and ETW thank for the scholarships of SNI authorized by CONACyT, EDI and COFAA authorized by IPN.

Supplementary material

203_2019_1692_MOESM1_ESM.docx (698 kb)
Supplementary material 1 (DOCX 697 kb)
203_2019_1692_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 16 kb)


  1. Abbas SZ, Riaz M, Ramzan N, Zahid MT, Shakoori FR, Rafatullah M (2014) Isolation and characterization of arsenic resistant bacteria from wastewater. Braz J Microbiol 45:1309–1315PubMedGoogle Scholar
  2. Adrian T-G-S, Tan P-W, Chen J-W, Yin W-F, Chan K-G (2016) Draft genome sequence of Kocuria rhizophila strain TPW45, an actinobacterium isolated from freshwater. J Genomics 4:16–18PubMedPubMedCentralGoogle Scholar
  3. Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257PubMedGoogle Scholar
  4. Arco-Lázaro E, Agudo I, Clemente R, Bernal MP (2016) Arsenic (V) adsorption-desorption in agricultural and mine soils: effects of organic matter addition and phosphate competition. Environ Pollut 216:71–79PubMedGoogle Scholar
  5. Bachate SP, Cavalca L, Andreoni V (2009) Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains. J Appl Microbiol 107:145–156PubMedGoogle Scholar
  6. Banerjee S, Datta S, Chattyopadhyay D, Sarkar P (2011) Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:1736–1747PubMedGoogle Scholar
  7. Camacho M, Redondo-Gomez S, Rodríguez-Llorente I, Rohde M, Spröer C, Schumann P, Klenk HP, Montero-Calasanz MDC (2017) Kocuria salina sp. nov., an actinobacterium isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum and emended description of Kocuria turfanensis. Int J Syst Evol Microbiol 67:5006–5012PubMedGoogle Scholar
  8. Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinform 4:29Google Scholar
  9. Castro DB, Pereira LB, Silva MV, Silva BP, Palermo BR, Carlos C, Belgini DR, Limache EE, Lacerda GV, Nery MB, Gomes MB, Souza SS, Silva TM, Rodrigues VD, Paulino LC, Vicentini R, Ferraz LF, Ottoboni LM (2015) High-quality draft genome sequence of Kocuria marina SO9-6, an actinobacterium isolated from a coppermine. Genom Data 5:34–35PubMedPubMedCentralGoogle Scholar
  10. Chitpirom K, Akaracharanya A, Tanasupawat S, Leepipatpibooim N, Kim KW (2009) Isolation and characterization of arsenic resistant bacteria from tannery wastes and agricultural soils in Thailand. Ann Microbiol 59:649–656Google Scholar
  11. Dastager SG, Tang SK, Srinivasan K, Lee JC, Li WJ (2014) Kocuria indica sp. nov., isolated from a sediment sample. Int J Syst Evol Microbiol 64:869–874PubMedGoogle Scholar
  12. Dey U, Chatterjee S, Mondal NK (2016) Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotech Rep 10:1–7Google Scholar
  13. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470PubMedPubMedCentralGoogle Scholar
  14. Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548PubMedGoogle Scholar
  15. Gu Y, Wang Y, Sun Y, Zhao K, Xiang Q, Yu X, Zhang X, Chen Q (2018) Genetic diversity and characterization of arsenic-resistant endophytic bacteria isolated from Pteris vittata, an arsenic hyperaccumulator. BMC Microbiol 18(1):42PubMedPubMedCentralGoogle Scholar
  16. Gunduz O, Simsek C, Hasozbek A (2010) Arsenic pollution in the groundwater of Simav Plain, Turkey: its impact on water quality and human health. Water Air Soil Pollut 205:43–62Google Scholar
  17. Hu S, Lu J, Jing C (2012) A novel colorimetric method for field arsenic speciation analysis. J Environ Sci 24:1341–1346Google Scholar
  18. Huang A, Teplitski M, Rathinasabapathi B, Ma L (2010) Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator Pteris vittata. Can J Microbiol 56:236–246PubMedGoogle Scholar
  19. Karczewska A, Bogda A, Krysiak A (2007) Arsenic in soils in the areas of former mining and mineral processing in Lower Silesia, southwestern Poland. Trace Met Other Contam Environ 9:411–440Google Scholar
  20. Kaur S, Kamli MR, Ali A (2009) Diversity of arsenate reductase genes (arsC genes) from arsenic-resistant environmental isolates of E. coli. Curr Microbiol 59:288–294PubMedGoogle Scholar
  21. Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacteria systematics. Methods Microbiol 19:161–207Google Scholar
  22. Kovacs G, Burghardt J, Pradella S, Schumann P, Stackebrandt E, Marialigeti K (1999) Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia). Int J Syst Bacteriol 49:167–173PubMedGoogle Scholar
  23. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  24. Li H, Li M, Huang Y, Rensing C, Wang G (2013) In silico analysis of bacterial arsenic islands reveals remarkable synteny and functional relatedness between arsenate and phosphate. Front Microbiol 4:347PubMedPubMedCentralGoogle Scholar
  25. Lou JC, Lin YC (2008) Assessing the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units. Environ Monit Assess 137:471–479PubMedGoogle Scholar
  26. Mallick I, Bhattacharyya C, Mukherji S, Dey D, Sarkar SC, Mukhopadhyay UK, Ghosh A (2018) Efective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: a step towards arsenic rhizoremediation. Sci Total Environ 610:1239–1250PubMedGoogle Scholar
  27. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60Google Scholar
  28. Mesa V, Navazas A, González-Gil R, González A, Weyens N, Lauga B, Gallego JL, Sánchez J, Peláez AI (2017) Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Appl Environ Microbiol 83(8):e03411–e03416PubMedPubMedCentralGoogle Scholar
  29. Mori Y, Kimura Y (2014) Myxococcus xanthus low-molecular-weight protein tyrosine phosphatase homolog, ArsA, possesses arsenate reductase activity. J Biosci Bioeng 118:10–13PubMedGoogle Scholar
  30. Mukherjee G, Saha C, Naskar N, Mukherjee A, Mukherjee A, Lahiri S, Majumder AL, Seal A (2018) An endophytic bacterial consortium modulates multiple strategies to improve arsenic phytoremediation efficacy in Solanum nigrum. Sci Rep 8:6979PubMedPubMedCentralGoogle Scholar
  31. Palermo BR, Castro DB, Pereira LB, Cauz AC, Magalhães BL, Carlos C, da Costa FL, Scagion GP, Higa JS, Almeida LD, das Neves MS, Cordeiro MA, do Prado PF, da Silva TM, Balsalobre TW, Paulino LC, Vicentini R, Ferraz LF, Ottoboni LM (2015) Draft genome sequence of Kocuria sp. SM24M-10 isolated from coral mucus. Genom Data 7:121–123PubMedPubMedCentralGoogle Scholar
  32. Patel PC, Goulhen F, Boothman C, Gault AG, Charnock JM, Kalia K, Lloyd JR (2007) Arsenate detoxification in a Pseudomonad hypertolerant to arsenic. Arch Microbiol 187:171–183PubMedGoogle Scholar
  33. Pepi M, Volterrani M, Renzi M, Marvasi M, Gasperini S, Franchi E, Focardi SE (2007) Arsenic-resistant bacteria isolated from contaminated sediments of the Orbetello Lagoon, Italy, and their characterization. J Appl Microbiol 103:2299–2308PubMedGoogle Scholar
  34. Preveena J, Bhore SJ (2013) Identification of bacterial endophytes associated with traditional medicinal plant Tridax procumbens Linn. Anc Sci Life 32:173–177PubMedPubMedCentralGoogle Scholar
  35. Qamar N, Rehman Y, Hasnain S (2017) Arsenic-resistant and plant growth promoting Firmicutes and γ-Proteobacteria species from industrially polluted irrigation water and corresponding cropland. J Appl Microbiol 123:748–758PubMedGoogle Scholar
  36. Rathnayake IVN, Megharaj M, Krishnamurti GSR, Bolan NS, Naidu R (2013) Heavy metal toxicity to bacteria—are the existing growth media accurate enough to determine heavy metal toxicity? Chemosphere 90:1195–1200PubMedGoogle Scholar
  37. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131Google Scholar
  38. Román-Ponce B, Ramos-Garza J, Vásquez-Murrieta MS, Rivera-Orduña FN, Chen WF, Yan J, Wang ET (2016a) Cultivable endophytic bacteria from heavy metal (loid)-tolerant plants. Arch Microbiol 198:941–956PubMedGoogle Scholar
  39. Román-Ponce B, Wang D, Vásquez-Murrieta MS, Chen WF, Estrada-de los Santos P, Sui XH, Wang ET (2016b) Kocuria arsenatis sp. nov., a novel arsenic-resistant endophytic actinobacterium associated with Prosopis laegivata grown on high arsenic polluted mine tailing in Mexico. Int J Syst Evol Microbiol 66:1027–1033PubMedGoogle Scholar
  40. Román-Ponce B, Ramos-Garza J, Arroyo-Herrera I, Maldonado-Hernández J, Bahena-Osorio Y, Wang ET, Vásquez-Murrieta MS (2018) Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production. Arch Microbiol 200:883–895PubMedGoogle Scholar
  41. Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67PubMedGoogle Scholar
  42. Sasser M (2001) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101Google Scholar
  43. Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35:743–759PubMedGoogle Scholar
  44. Simeonova DD, Lievremont D, Lagarde F, Muller DAE, Groudeva VI, Lett MC (2004) Microplate screening assay for the detection of arsenite-oxidizing and arsenate-reducing bacteria. FEMS Microbiol Lett 237:249–253PubMedGoogle Scholar
  45. Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247–270PubMedGoogle Scholar
  46. Sousa T, Branco R, Piedade AP, Morais PV (2015) Hyper accumulation of arsenic in mutants of Ochrobactrum tritici silenced for arsenite efflux pumps. PLoS ONE 10(7):e0131317PubMedPubMedCentralGoogle Scholar
  47. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedPubMedCentralGoogle Scholar
  48. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedPubMedCentralGoogle Scholar
  49. Tewari R, Dudeja M, Das AK, Nandy S (2013) Kocuria Kristinae in catheter associated urinary tract infection: a case report. J Clin Diagn Res 7:1692–1693PubMedPubMedCentralGoogle Scholar
  50. Tighe SW, de Lajudie P, Dipietro K, Lindström K, Nick G, Jarvis BD (2000) Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801PubMedGoogle Scholar
  51. Tiwari S, Sarangi BK, Thul ST (2016) Identification of arsenic resist- ant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application. J Environ Manag 180:359–365Google Scholar
  52. Wang ET, Tan ZY, Guo XW, Rodriguez-Duran R, Boll G, Martinez-Romero E (2006) Diverse endophytic bacteria isolated from a leguminous tree Conzattia multiflora grown in Mexico. Arch Microbiol 186:251–259PubMedGoogle Scholar
  53. Yang H-C, Rosen BP (2016) New mechanisms of bacterial arsenic resistance. Biomed J 39:5–13PubMedPubMedCentralGoogle Scholar
  54. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322PubMedPubMedCentralGoogle Scholar
  55. Zhou G, Luo X, Tang Y, Zhang L, Yang Q, Qiu Y, Fang C (2008) Kocuria flava sp. nov. and Kocuria turfanensis sp. nov., airborne actinobacteria isolated from Xinjiang, China. Int J Syst Evol Microbiol 58:1304–1307PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tania Zacaria Vital
    • 1
  • Brenda Román-Ponce
    • 1
    • 3
  • Flor N. Rivera Orduña
    • 1
  • Paulina Estrada de los Santos
    • 1
  • M. Soledad Vásquez-Murrieta
    • 1
  • Yue Deng
    • 2
  • Hong Li Yuan
    • 2
  • En Tao Wang
    • 1
    Email author
  1. 1.Departamento de Microbiología, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexico CityMexico
  2. 2.State Key Laboratory of Agrobiotechnology, College of Biological Sciences and Rhizobium Research CenterChina Agricultural UniversityBeijingChina
  3. 3.Departamento de Microbiología y Genética, Edificio Departamental, Lab. 214, Campus Miguel de UnamunoUniversidad de SalamancaSalamancaSpain

Personalised recommendations