Advertisement

Comparison of six methods of DNA extraction for the diagnosis of bovine brucellosis by real-time PCR

  • Ingred Sales Preis
  • André Moura
  • Patrícia Gomes de Souza
  • Paulo Martins Soares Filho
  • Antônio Augusto Fonseca JúniorEmail author
Original Paper

Abstract

Brucellosis is an infectious disease caused by bacteria of the genus Brucella, which affects domestic animals and is transmissible to humans. The objective of this study was to evaluate six methods of DNA extraction directly from bovine tissue to detect Brucella spp. The Cq values for all samples were above 30 and varied according to the extraction kit used, but four kits showed no statistical difference in sensitivity. This work demonstrates the importance of choosing the best extraction kit before validation of a molecular diagnostic technique.

Keywords

qPCR DNA extraction Diagnosis Brucellosis 

Notes

Acknowledgements

The authors are grateful to Laboratório Nacional Agropecuário (Lanagro-MG), INCT Pecuária and CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnológico) SAGRES Project: 457417/2012-9 for financial support and fellowships.

References

  1. Al-Ajlan HH, Ibrahim AS, Al-Salamah AA (2011) Comparison of different PCR methods for detection of Brucella spp. in human blood samples. Pol J Microbiol 60(1):27–33Google Scholar
  2. Alton GG, Jones LM, Angus RD, Verger JM (1988) Techniques for the Brucellosis laboratory: bacteriological methods. Inram, ParisGoogle Scholar
  3. Bielanski A, Algire J, Lalonde A, Nadin-Davis S (2009) Transmission of bovine viral diarrhea virus (BVDV) via in vitro-fertilized embryos to recipients, but not to their offspring. Theriogenology 71(3):499–508CrossRefGoogle Scholar
  4. Collins CH (1983) Laboratory-acquired infections. Butterworths, LondonGoogle Scholar
  5. Corbel MJ (2006) Brucellosis in humans and animals. WHO Press, GenevaGoogle Scholar
  6. Dauphin LA, Hutchins RJ, Bost LA, Bowen MD (2009) Evaluation of automated and manual commercial DNA extraction methods for recovery of Brucella DNA from suspensions and spiked swabs. J Clin Microbiol 47(12):3920–3926CrossRefGoogle Scholar
  7. Ergönül O, Celikbaş A, Tezeren D, Güvener E, Dokuzoğuz B (2004) Analysis of risk factors for laboratory-acquired Brucella infections. J Hosp Infect 56(3):223–227CrossRefGoogle Scholar
  8. Foster JT, Okinaka RT, Svensson R, Shaw K, De BK, Robison RA, Probert WS, Kenefic LJ, Brown WD, Keim P (2008) Real-time PCR assays of single-nucleotide polymorphisms defining the major Brucella clades. J Clin Microbiol 46(1):296–301CrossRefGoogle Scholar
  9. Gwida MM, El-Gohary AH, Melzer F, Tomaso H, Rösler U, Wernery U, Wernery R, Elschner MC, Khan I, Eickhoff M, Schöner D, Neubauer H (2011) Comparison of diagnostic tests for the detection of Brucella spp. in camel sera. BMC Res Notes 4:525CrossRefGoogle Scholar
  10. Hunt PW (2011) Molecular diagnosis of infections and resistance in veterinary and human parasites. Vet Parasitol 180(1–2):12–46CrossRefGoogle Scholar
  11. Kraemer HC (1992) Evaluating medical tests: objective and quantitative guidelines. Sage Publications, Newbury Park, CAGoogle Scholar
  12. Lusk TS, Strain E, Kase JA (2013) Comparison of six commercial DNA extraction kits for detection of Brucella neotomae in Mexican and Central American-style cheese and other milk products. Food Microbiol 34(1):100–105CrossRefGoogle Scholar
  13. McGinn T, Wyer PC, Newman TB, Keitz S, Leipzig R, Guyatt G (2004) Tips for learners of evidence-based medicine: 3. Measures of observer variability (kappa statistic). Can Med Assoc J 171:1369–1373CrossRefGoogle Scholar
  14. OIE (2019) Manual of diagnostic tests and vaccines for terrestrial animals 2018. World Organisation for Animal Health, ParisGoogle Scholar
  15. Orzil LL, Preis IS, Almeida IG, Souza PG, Soares Filho PM, Jacinto FB, Fonseca Júnior AA (2016) Validation of the multiplex PCR for identification of Brucella spp. Ciência Rural 46(5):847–852CrossRefGoogle Scholar
  16. Pinheiro de Oliveira TF, Fonseca AA Jr, Camargos MF, de Oliveira AM, Pinto Cottorello AC, Souza Ados R, de Almeida IG, Heinemann MB (2013) Detection of contaminants in cell cultures, sera and trypsin. Biologicals 41(6):407–414CrossRefGoogle Scholar
  17. Poester FP, Gonçalves VS, Lage AP (2002) Brucellosis in Brazil. Vet Microbiol 90(1–4):55–62CrossRefGoogle Scholar
  18. Queipo-Ortuño MI, Tena F, Colmenero JD, Morata P (2008) Comparison of seven commercial DNA extraction kits for the recovery of Brucella DNA from spiked human serum samples using real-time PCR. Eur J Clin Microbiol Infect Dis 27(2):109–114CrossRefGoogle Scholar
  19. Sousa MG, Salvarani FM, Bomjardim HA, Fonseca JRAA, Preis IS, Brito MF, Leite RC, Barbosa JD (2015) Infecção transplacentária e intrauterina por Brucella abortus em búfalos (Bubalus bubalis). Pesquisa Veterinária Brasileira (Impresso) 35:882–888CrossRefGoogle Scholar
  20. Tomaso H, Kattar M, Eickhoff M, Wernery U, Al Dahouk S, Straube E, Neubauer H, Scholz HC (2010) Comparison of commercial DNA preparation kits for the detection of Brucellae in tissue using quantitative real-time PCR. BMC Infect Dis 20(10):100CrossRefGoogle Scholar
  21. Yu WL, Nielsen K (2010) Review of detection of Brucella sp. by polymerase chain reaction. Croat Med J 51(4):306–313CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratório Nacional Agropecuário de Minas Gerais (Lanagro/MG)Centro Pedro LeopoldoBrazil

Personalised recommendations