Advertisement

Archives of Microbiology

, Volume 201, Issue 8, pp 1047–1051 | Cite as

Identification of clonal complexes of Mycobacterium bovis in Brazil

  • Érica Bravo Sales
  • Andrea Padilha de Alencar
  • Mikael Arrais Hodon
  • Paulo Martins Soares Filho
  • Antonio Francisco de Souza-Filho
  • Andrey Pereira Lage
  • Marcos Bryan Heinemann
  • Antônio Augusto Fonseca JúniorEmail author
Original Paper

Abstract

Bovine tuberculosis is a disease that is widely distributed around the world. Its causative agent, Mycobacterium bovis, has characteristics of a microorganism with clonal multiplication in populations with no evidence of genetic exchange between strains, and, consequently, a group of strains can be identified as descending from a common ancestor. The aim of this study was to investigate the clonal complexes of M. bovis isolated from samples of lesions suggestive of bovine tuberculosis collected from slaughterhouses in various states of Brazil between 2006 and 2012. Ninety samples were analyzed, and it was found that 14.4% belonged to the clonal complex European1 and 81.1% to the clonal complex European2, while 4.65% were not identified as any of the four known complexes.

Keywords

Clonal complex Mycobacterium bovis Bovine tuberculosis Epidemiology 

Notes

Acknowledgements

We thank Dr. Ricardo Augusto Dias (VPS/FMVZ/USP) for his help in drawing up the map.

Funding

Funding was provided by Núcleo de Estudos, Pesquisa e Assessoria à Saúde and Conselho Nacional de Desenvolvimento Científico e Tecnológico.

References

  1. Araujo CP, Osorio ALAR, Jorge KSG, Ramos CAN, Souza Filho AF, Vidal CES et al (2014) Direct detection of Mycobacterium tuberculosis complex in bovine and bubaline tissues through nested-PCR. Braz J Microbiol 45(2):633–640CrossRefPubMedPubMedCentralGoogle Scholar
  2. Berg S, Garcia-Pelayo MC, Mueller B, Hailu E, Asiimwe B, Kremer K et al (2011) African 2, a clonal complex of Mycobacterium bovis epidemiologically important in East Africa. J Bacteriol 193(3):670–678.  https://doi.org/10.1128/jb.00750-10 CrossRefPubMedGoogle Scholar
  3. Canevari Castelão AB, Nishibe C, Moura A, de Alencar AP, de Azevedo Issa M, Hodon MA et al (2014) Draft genome sequence of Mycobacterium bovis strain AN5, used for production of purified protein derivative. Genome Announc 2(2):e00277-14.  https://doi.org/10.1128/genomeA.00277-14 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cardoso MA, Cardoso RF, Hirata RDC, Hirata MH, Leite CQF, Santos ACB et al (2009) Direct detection of Mycobacterium bovis in bovine lymph nodes by PCR. Zoonoses Public Health 56(8):465–470.  https://doi.org/10.1111/j.1863-2378.2008.01199.x CrossRefPubMedGoogle Scholar
  5. Comas I, Gagneux S (2009) The past and future of tuberculosis research. PLoS Pathog 5(10):e1000600.  https://doi.org/10.1371/journal.ppat.1000600 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dani MA, Heinneman MB, Dani SU (2008) Brazilian Nelore cattle: a melting pot unfolded by molecular genetics. Genet Mol Res 7(4):1127–1137CrossRefPubMedGoogle Scholar
  7. de Souza Figueiredo EE, Silvestre FG, Campos WN, Furlanetto LV, Medeiros L, Lilenbaum W et al (2009) Identification of Mycobacterium bovis isolates by a multiplex PCR. Braz J Microbiol 40(2):231–233CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fitzgerald SD, Kaneene JP (2013) Wildlife reservoirs of bovine tuberculosis worldwide: hosts, pathology, surveillance, and control. Vet Pathol 50(3):488–499.  https://doi.org/10.1177/0300985812467472 CrossRefPubMedGoogle Scholar
  9. Lasserre M, Fresia P, Greif G, Iraola G, Castro-Ramos M, Juambeltz A, Nuñez Á, Naya H, Robello C, Berná L (2018) Whole genome sequencing of the monomorphic pathogen Mycobacterium tuberculosis reveals local differentiation of cattle clinical isolates. BMC Genom 19(1):2.  https://doi.org/10.1186/s12864-017-4249-6 CrossRefGoogle Scholar
  10. Lilenbaum W, Marassi CD, Medeiros LS (2010) Controlling bovine TB. Vet Rec 167(17):669–670.  https://doi.org/10.1136/vr.c5885 CrossRefPubMedGoogle Scholar
  11. Müller B, Hilty M, Berg S, Garcia-Pelayo MC, Dale J, Boschiroli ML et al (2009) African 1, an epidemiologically important clonal complex of Mycobacterium bovis dominant in Mali, Nigeria, Cameroon, and Chad. J Bacteriol 191(6):1951–1960.  https://doi.org/10.1128/JB.01590-08 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Orloski K, Robbe-Austerman S, Stuber T, Hench B, Schoenbaum M (2018) Whole genome sequencing of Mycobacterium bovis isolated from livestock in the United States, 1989–2018. Front Vet Sci 5:253CrossRefPubMedPubMedCentralGoogle Scholar
  13. Parreiras PM, Andrade GI, do Nascimento TDF, Oelemann MC, Gomes HM, de Alencar AP et al (2012) Spoligotyping and variable number tandem repeat analysis of Mycobacterium bovis isolates from cattle in Brazil. Mem Inst Oswaldo Cruz 107(1):64–73CrossRefPubMedGoogle Scholar
  14. Ramos DF, Tavares L, da Silva PE, Dellagostin AO (2014a) Molecular typing of Mycobacterium bovis isolates: a review. Braz J Microbiol 45(2):365–372CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ramos DF, Silva AB, Fagundes MQ, von Groll A, da Silva PE, Dellagostin AO (2014b) Molecular typing of Mycobacterium bovis isolated in the south of Brazil. Braz J Microbiol 45(2):657–660CrossRefPubMedPubMedCentralGoogle Scholar
  16. Rocha VC, de Figueiredo SC, Rosales CA, de Hildebrand e Grisi Filho JH, Keid LB, Soares RM et al (2013) Molecular discrimination of Mycobacterium bovis in São Paulo, Brazil. Vector Borne Zoonotic Dis 13(1):17–21.  https://doi.org/10.1089/vbz.2012.1035 CrossRefPubMedGoogle Scholar
  17. Rodriguez-Campos S, Schurch AC, Dale J, Lohan AJ, Cunha MV, Botelho A et al (2012) European 2—a clonal complex of Mycobacterium bovis dominant in the Iberian Peninsula. Infect Genet Evol 12(4):866–872.  https://doi.org/10.1016/j.meegid.2011.09.004 CrossRefPubMedGoogle Scholar
  18. Sales ML, Fonseca AA, Sales EB, Cottorello AC, Issa MA, Hodon MA et al (2014a) Evaluation of molecular markers for the diagnosis of Mycobacterium bovis. Folia Microbiol (Praha) 59(5):433–438.  https://doi.org/10.1007/s12223-014-0317-3 CrossRefGoogle Scholar
  19. Sales ML, Fonseca AA, Orzil L, Alencar AP, Hodon MA, Issa MA et al (2014b) Validation of two real-time PCRs targeting the PE-PGRS 20 gene and the region of difference 4 for the characterization of Mycobacterium bovis isolates. Genet Mol Res 13(2):4607–4616.  https://doi.org/10.4238/2014.June.18.3 CrossRefPubMedGoogle Scholar
  20. Sales ML, Fonseca Júnior AA, Orzil L, Alencar AP, Silva MR, Issa MA et al (2014c) Validation of a real-time PCR assay for the molecular identification of Mycobacterium tuberculosis. Braz J Microbiol 45(4):1363–1369CrossRefPubMedGoogle Scholar
  21. Sanou A, Tarnagda Z, Kanyala E, Zingué D, Nouctara M, Ganamé Z et al (2014) Mycobacterium bovis in Burkina Faso: epidemiologic and genetic links between human and cattle isolates. PLoS Negl Trop Dis 8(10):e3142.  https://doi.org/10.1371/journal.pntd.0003142 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Smith NH (2012) The global distribution and phylogeography of Mycobacterium bovis clonal complexes. Infect Genet Evol 12(4):857–865.  https://doi.org/10.1016/j.meegid.2011.09.007 CrossRefPubMedGoogle Scholar
  23. Smith NH, Dale J, Inwald J, Palmer S, Gordon SV, Hewinson RG et al (2003) The population structure of Mycobacterium bovis in Great Britain: clonal expansion. Proc Natl Acad Sci USA 100(25):15271–15275.  https://doi.org/10.1073/pnas.2036554100 CrossRefPubMedGoogle Scholar
  24. Smith NH, Gordon SV, de la Rua-Domenech R, Clifton-Hadley RS (2006) Hewinson RG (2006) Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nat Rev Microbiol 4(9):670–681.  https://doi.org/10.1038/rnmicro1472 CrossRefPubMedGoogle Scholar
  25. Smith NH, Berg S, Dale J, Allen A, Rodriguez S, Romero B et al (2011) European 1: a globally important clonal complex of Mycobacterium bovis. Infect Genet Evol 11(6):1340–1351.  https://doi.org/10.1016/j.meegid.2011.04.027 CrossRefPubMedGoogle Scholar
  26. Zanini MS, Moreira EC, Salas CE, Lopes MTP, Barouni AS, Roxo E et al (2005) Molecular typing of Mycobacterium bovis isolates from south-east Brazil by spoligotyping and RFLP. J Vet Med Ser B Infect Dis Vet Public Health.  https://doi.org/10.1111/j.1439-0450.2005.00835.x CrossRefGoogle Scholar
  27. Zimpel CK, Brandão PE, de Souza Filho AF, de Souza RF, Ikuta CY, Ferreira Neto JS et al (2017) Complete genome sequencing of Mycobacterium bovis SP38 and comparative genomics of Mycobacterium bovis and M. tuberculosis strains. Front Microbiol 8:2389.  https://doi.org/10.3389/fmicb.2017.02389 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Érica Bravo Sales
    • 1
  • Andrea Padilha de Alencar
    • 2
  • Mikael Arrais Hodon
    • 1
  • Paulo Martins Soares Filho
    • 1
  • Antonio Francisco de Souza-Filho
    • 3
  • Andrey Pereira Lage
    • 4
  • Marcos Bryan Heinemann
    • 3
  • Antônio Augusto Fonseca Júnior
    • 1
    Email author
  1. 1.Laboratório Nacional Agropecuário de Minas GeraisPedro LeopoldoBrazil
  2. 2.Laboratório Nacional Agropecuário de PernambucoRecifeBrazil
  3. 3.Laboratório de Zoonoses Bacterianas, Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e ZootecniaUniversidade de São PauloSão PauloBrazil
  4. 4.Laboratório de Bacteriologia Aplicada, Departamento de Medicina Veterinária Preventiva, Escola de VeterináriaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations