Advertisement

Terraforming: synthetic biology’s final frontier

  • Roy D. SleatorEmail author
  • Niall Smith
Commentary

Abstract

Synthetic biology, the design and synthesis of synthetic biological systems from DNA to whole cells, has provided us with the ultimate tools for space exploration and colonisation. Herein, we explore some of the most significant advances and future prospects in the field of synthetic biology, in the context of astrobiology and terraforming.

Keywords

Synthetic biology Terraforming Bioforming Mars Exoplanet Proxima b TRAPPIST-1 CRISPR De-extinction Light sails Voyager Ecopoiesis 

Notes

Acknowledgements

The authors dedicate this paper to the memory of Sister Mary Vermolen.

Author contributions

RDS and NS conceived the idea and wrote the manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. Abe Y, Abe-Ouchi A, Sleep NH, Zahnle KJ (2011) Habitable zone limits for dry planets. Astrobiology 11:443–460.  https://doi.org/10.1089/ast.2010.0545 CrossRefGoogle Scholar
  2. Abelson PH (1977) The voyager missions. Science 197:1039.  https://doi.org/10.1126/science.197.4308.1039 CrossRefGoogle Scholar
  3. Agapov AA, Kulbachinskiy AV (2015) Mechanisms of stress resistance and gene regulation in the radioresistant bacterium Deinococcus radiodurans. Biochemistry (Moscow) 80(10):1201–1216CrossRefGoogle Scholar
  4. Averner MM, MacElroy RD (1976) On the habitability of Mars: an approach to planetary ecosynthesis. NASA Special publication 414. Scientific and Technical Information Office, National Aeronautics and Space Agency, Washington, DCGoogle Scholar
  5. Benson DA et al (2018) GenBank. Nucleic Acids Res 46:D41–D47.  https://doi.org/10.1093/nar/gkx1094 CrossRefGoogle Scholar
  6. Cassan A et al (2012) One or more bound planets per Milky Way star from microlensing observations. Nature 481:167–169.  https://doi.org/10.1038/nature10684 CrossRefGoogle Scholar
  7. Church G (2013) Please reanimate. Sci Am 309:12CrossRefGoogle Scholar
  8. Church GM, Gao Y, Kosuri S (2012) Next-generation digital information storage in DNA. Science 337:1628.  https://doi.org/10.1126/science.1226355 CrossRefGoogle Scholar
  9. Cockell CS et al (2000) The ultraviolet environment of Mars: biological implications past, present, and future. Icarus 146:343–359CrossRefGoogle Scholar
  10. Crick FHC, Orgel LE (1973) Directed panspermia. Icarus 19:341–346CrossRefGoogle Scholar
  11. Dien VT, Morris SE, Karadeema RJ, Romesberg FE (2018) Expansion of the genetic code via expansion of the genetic alphabet. Curr Opin Chem Biol 46:196–202.  https://doi.org/10.1016/j.cbpa.2018.08.009 CrossRefGoogle Scholar
  12. Friedmann EI, Ocampo-Friedmann R (1995) A primitive cyanobacterium as pioneer microorganism for terraforming Mars. Adv Space Res 15:243–246CrossRefGoogle Scholar
  13. Friedmann EI, Hua M, Ocampo-Friedmann R (1993) Terraforming Mars: dissolution of carbonate rocks by cyanobacteria. J Br Interplanet Soc 46:291–292Google Scholar
  14. Gambino M (2012) What Is on Voyager’s Golden Record? https://www.smithsonianmag.com/science-nature/what-is-on-voyagers-golden-record-73063839/. Accessed 28 Mar 2019
  15. Gillon M et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542:456–460.  https://doi.org/10.1038/nature21360 CrossRefGoogle Scholar
  16. Goldman N et al (2013) Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 494:77–80.  https://doi.org/10.1038/nature11875 CrossRefGoogle Scholar
  17. Graham JM (2004) The biological terraforming of Mars: planetary ecosynthesis as ecological succession on a global scale. Astrobiology 4:168–195.  https://doi.org/10.1089/153110704323175133 CrossRefGoogle Scholar
  18. Gros C (2016) Developing ecospheres on transiently habitable planets: the genesis project. Astrophys Space Sci 361:324CrossRefGoogle Scholar
  19. Hand E (2008) Mars exploration: Phoenix: a race against time. Nature 456:690–695.  https://doi.org/10.1038/456690a CrossRefGoogle Scholar
  20. Haynes RH, McKay CP (1992) The implantation of life on Mars: feasibility and motivation. Adv Space Res 12:133–140CrossRefGoogle Scholar
  21. Hegerl GC, Bronnimann S, Schurer A, Cowan T (2018) The early 20th century warming: anomalies, causes, and consequences. Wiley Interdiscip Rev Clim Change 9:e522.  https://doi.org/10.1002/wcc.522 CrossRefGoogle Scholar
  22. Hess SL et al (1976) Mars climatology from viking 1 after 20 sols. Science 194:78–81.  https://doi.org/10.1126/science.194.4260.78 CrossRefGoogle Scholar
  23. Hoshika S et al (2019) Hachimoji DNA and RNA: a genetic system with eight building blocks. Science 363:884–887.  https://doi.org/10.1126/science.aat0971 CrossRefGoogle Scholar
  24. Hutchison CA 3rd et al (2016) Design and synthesis of a minimal bacterial genome. Science 351:aad6253.  https://doi.org/10.1126/science.aad6253
  25. Ilic O, Went CM, Atwater HA (2018) Nanophotonic heterostructures for efficient propulsion and radiative cooling of relativistic light sails. Nano Lett.  https://doi.org/10.1021/acs.nanolett.8b02035 Google Scholar
  26. Jakosky BM, Edwards CS (2018) Inventory of CO2 available for terraforming Mars. Nature Astronomy 2:634–639CrossRefGoogle Scholar
  27. Jakosky BM et al (2017) Mars' atmospheric history derived from upper-atmosphere measurements of (38)Ar/(36)Ar. Science 355:1408–1410.  https://doi.org/10.1126/science.aai7721 CrossRefGoogle Scholar
  28. Johnson-Freese J (2017) Build on the outer space treaty. Nature 550:182–184.  https://doi.org/10.1038/550182a CrossRefGoogle Scholar
  29. Karr JR et al (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150:389–401.  https://doi.org/10.1016/j.cell.2012.05.044 CrossRefGoogle Scholar
  30. Kerr RA (2013) Planetary science. It's official–Voyager has left the solar system. Science 341:1158–1159.  https://doi.org/10.1126/science.341.6151.1158 CrossRefGoogle Scholar
  31. Knott GJ, Doudna JA (2018) CRISPR-Cas guides the future of genetic engineering. Science 361:866–869.  https://doi.org/10.1126/science.aat5011 CrossRefGoogle Scholar
  32. MacGregor MA, Weinberger AJ, Wilner D, AF Kowalski, Cranmer SR (2018) Detection of a Millimeter Flare From Proxima Centauri. Astrophys J Lett. arXiv:1802.08257v1.  https://doi.org/10.3847/2041-8213/aaad6b
  33. Mahaffy PR et al (2015G) Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophys Res Lett 42:8951–8957.  https://doi.org/10.1002/2015GL065329 CrossRefGoogle Scholar
  34. Mann A (2017) Inner workings: all eyes on proxima centauri b. Proc Natl Acad Sci U S A 114:6646–6648.  https://doi.org/10.1073/pnas.1706680114 Google Scholar
  35. Matijevic J et al (1997) Characterization of the Martian surface deposits by the Mars Pathfinder rover Sojourner. Rover Team. Science 278:1765–1768CrossRefGoogle Scholar
  36. McKay CP, Toon OB, Kasting JF (1991) Making mars habitable. Nature 352:489–496.  https://doi.org/10.1038/352489a0 CrossRefGoogle Scholar
  37. Menezes AA, Montague MG, Cumbers J, Hogan JA, Arkin AP (2015) Grand challenges in space synthetic biology. J R Soc Interface 12:20150803.  https://doi.org/10.1098/rsif.2015.0803 CrossRefGoogle Scholar
  38. Nasera MZ, Chehab AI (2018) Materials and design concepts for space-resilient structures. Progr Aerosp Sci 98:74–90.  https://doi.org/10.1016/j.paerosci.2018.03.004 CrossRefGoogle Scholar
  39. Nurnberg DJ et al (2018) Photochemistry beyond the red limit in chlorophyll f-containing photosystems. Science 360:1210–1213.  https://doi.org/10.1126/science.aar8313 CrossRefGoogle Scholar
  40. O' Driscoll A, Sleator RD (2013) Synthetic DNA: the next generation of big data storage. Bioengineered 4:123–125.  https://doi.org/10.4161/bioe.24296 CrossRefGoogle Scholar
  41. Ott E et al (2017) Proteometabolomic response of Deinococcus radiodurans exposed to UVC and vacuum conditions: Initial studies prior to the Tanpopo space mission. PLoS One 12:e0189381.  https://doi.org/10.1371/journal.pone.0189381 CrossRefGoogle Scholar
  42. Parnell J et al (2007) Searching for life on Mars: selection of molecular targets for ESA's aurora ExoMars mission. Astrobiology 7:578–604.  https://doi.org/10.1089/ast.2006.0110 CrossRefGoogle Scholar
  43. Sanderson K (2010) Mars rover Spirit (2003–10). Nature 463:600.  https://doi.org/10.1038/463600a CrossRefGoogle Scholar
  44. Scott R (2015) The Martian. A 20th century fox movie directed by Ridley Scott, screenplay by Drew Goddard, based on the novel by Andy Weir. Staring Matt DamonGoogle Scholar
  45. Shapley H (1951) Proxima centauri as a flare star. Proc Natl Acad Sci U S A 37:15–18CrossRefGoogle Scholar
  46. Shorthill RW, Moore HJ 2nd, Scott RF, Hutton RE, Liebes S Jr, Spitzer CR (1976) The "soil" of Mars (viking 1). Science 194:91–97.  https://doi.org/10.1126/science.194.4260.91 CrossRefGoogle Scholar
  47. Singer SF (1968) Planetary engineering. Science 160:1476–1478.  https://doi.org/10.1126/science.160.3835.1476 CrossRefGoogle Scholar
  48. Singh H (2018) Desiccation and radiation stress tolerance in cyanobacteria. J Basic Microbiol.  https://doi.org/10.1002/jobm.201800216 Google Scholar
  49. Sleator RD (2011) Phylogenetics. Arch Microbiol 193:235–239.  https://doi.org/10.1007/s00203-011-0677-x CrossRefGoogle Scholar
  50. Sleator RD (2012) Digital biology: a new era has begun. Bioengineered 3:311–312.  https://doi.org/10.4161/bioe.22367 CrossRefGoogle Scholar
  51. Sleator RD (2013) A beginner's guide to phylogenetics. Microb Ecol 66:1–4.  https://doi.org/10.1007/s00248-013-0236-x CrossRefGoogle Scholar
  52. Sleator RD (2014b) Genetics just got SEXY: sequences encoding XY. Bioengineered 5:214–215.  https://doi.org/10.4161/bioe.29306 CrossRefGoogle Scholar
  53. Sleator RD (2014c) The synthetic biology future. Bioengineered 5:69–72.  https://doi.org/10.4161/bioe.28317 CrossRefGoogle Scholar
  54. Sleator RD, Smith N (2017a) Directed panspermia: a 21st century perspective. Sci Prog 100:187–193.  https://doi.org/10.3184/003685017X14901006155062 CrossRefGoogle Scholar
  55. Sleator RD, Smith N (2017b) TRAPPIST-1: the dawning of the age of Aquarius. Bioengineered 8:194–195.  https://doi.org/10.1080/21655979.2017.1306998 CrossRefGoogle Scholar
  56. Sleator RD (2014a) The genetic code. Rewritten, revised, repurposed. Artif DNA PNA XNA 5:e29408.  https://doi.org/10.4161/adna.29408
  57. Sleator RD (2016) JCVI-syn3.0—a synthetic genome stripped bare! Bioengineered 7:53–56.  https://doi.org/10.1080/21655979.2016.1175847
  58. Smith PH et al (1997) Results from the Mars Pathfinder camera. Science 278:1758–1765CrossRefGoogle Scholar
  59. Soffen GA (1976) Status of the viking missions. Science 194:57–59.  https://doi.org/10.1126/science.194.4260.57 CrossRefGoogle Scholar
  60. Sole RV, Montanez R, Duran-Nebreda S (2015) Synthetic circuit designs for earth terraformation. Biol Direct 10:37.  https://doi.org/10.1186/s13062-015-0064-7 CrossRefGoogle Scholar
  61. Squyres SW et al (2009) Exploration of Victoria crater by the Mars rover Opportunity. Science 324:1058–1061.  https://doi.org/10.1126/science.1170355 CrossRefGoogle Scholar
  62. Thompson DB et al (2018) The future of multiplexed eukaryotic genome engineering. ACS Chem Biol 13:313–325.  https://doi.org/10.1021/acschembio.7b00842 CrossRefGoogle Scholar
  63. Voosen P (2018a) NASA Curiosity rover hits organic pay dirt on Mars. Science 360:1054–1055.  https://doi.org/10.1126/science.360.6393.1054 CrossRefGoogle Scholar
  64. Voosen P (2018b) Safely settled, InSight gets ready to look inside Mars. Science 362:979–980.  https://doi.org/10.1126/science.362.6418.979 CrossRefGoogle Scholar
  65. Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738CrossRefGoogle Scholar
  66. Wu W, Yang Y, Lei H (2018) Progress in the application of CRISPR: From gene to base editing. Med Res Rev.  https://doi.org/10.1002/med.21537 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesCork Institute of TechnologyCorkIreland
  2. 2.Blackrock Castle ObservatoryCork Institute of TechnologyCorkIreland

Personalised recommendations