Advertisement

Shotgun metagenomics offers novel insights into taxonomic compositions, metabolic pathways and antibiotic resistance genes in fish gut microbiome

  • Anuj TyagiEmail author
  • Balwinder Singh
  • Naveen K. Billekallu Thammegowda
  • Niraj K. Singh
Original Paper

Abstract

Gut microbiota of freshwater carp (Labeo rohita) was investigated by shotgun metagenomics to understand its taxonomic composition and functional capabilities. With the presence of 36 phyla, 326 families and 985 genera, the fish gut microbiota was found to be quite diverse in nature. However, at the phylum level, more than three-fourths of gut microbes belonged to Proteobacteria. Very low prevalence of commonly used probiotic bacteria (Bacillus, Lactobacillus, Streptococcus, and Lactococcus) in fish gut suggested the need to search for alternative probiotics for aquaculture use. Biosynthesis pathways were found to be the most dominant (51%) followed by degradation (39%), energy metabolism (4%) and fermentation (2%). In conformity with herbivorous feeding habit of L. rohita, gut microbiome also had pathways for the degradation of cellulose, hemicellulose, chitin, pectin, starch, and other complex carbohydrates. High prevalence of Actinobacteria and antibiotic biosynthesis pathways in the fish gut microbiome indicated its potential for bioprospecting of potentially novel natural antibiotics. Fifty-one different types of antibiotic resistance genes (ARGs) belonging to 15 antimicrobial resistance (AMR) gene families and conferring resistance against 24 antibiotic types were detected in fish gut. Some of the ARGs for multi-drug resistance were also found to be located on sequences of plasmid origin. The presence of pathogenic bacteria and ARGs on plasmid sequences suggested the potential risk due to horizontal gene transfer in the confined gut environment. The role of ARGs in fish gut microbiome needs further investigations.

Keywords

Fish gut Microbial diversity Shotgun metagenomics Metabolic pathways Antibiotic resistance 

Notes

Acknowledgements

The authors are grateful to the Dean (College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India) for all necessary support during this study. Funding support from Science and Engineering Research Board, Department of Science and Technology (DST-SERB) Young Scientist Start-Up Research Grant (YSS/2014/000269) to Anuj Tyagi has been utilized to carry this work and it is gratefully acknowledged.

Author contributions

AT conceived the study, performed the bioinformatics analysis and drafted the manuscript. BS collected and processed the samples. NKBT helped in sample collection, result interpretations, and manuscript drafting. NKS supported in data analysis and manuscript drafting. All authors contributed in final manuscript correction.

Compliance with ethical standards

Conflict of interest

No conflict of interest declared.

Ethical standards

No special permission was required for this study.

Supplementary material

203_2018_1615_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 21 KB)
203_2018_1615_MOESM2_ESM.html (1.3 mb)
Supplementary material 2 (HTML 1309 KB)
203_2018_1615_MOESM3_ESM.html (439 kb)
Supplementary material 3 (HTML 438 KB)

References

  1. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8:251–259.  https://doi.org/10.1038/nrmicro2312 CrossRefPubMedGoogle Scholar
  2. Barka EA et al (2016) Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 80:1–43.  https://doi.org/10.1128/MMBR.00019-15 CrossRefPubMedGoogle Scholar
  3. Bashir Y, Pradeep Singh S, Kumar Konwar B (2014) Metagenomics: an application based perspective. Chin J Biol 2014:7.  https://doi.org/10.1155/2014/146030 CrossRefGoogle Scholar
  4. Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DG (2014) Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front Microbiol 5:648.  https://doi.org/10.3389/fmicb.2014.00648 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60.  https://doi.org/10.1038/nmeth.3176 CrossRefPubMedGoogle Scholar
  7. David LA et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563.  https://doi.org/10.1038/nature12820 CrossRefPubMedGoogle Scholar
  8. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340.  https://doi.org/10.1194/jlr.R036012 CrossRefGoogle Scholar
  9. Ghanbari M, Kneifel W, Domig KJ (2015) A new view of the fish gut microbiome: advances from next-generation sequencing. Aquaculture 448:464–475.  https://doi.org/10.1016/j.aquaculture.2015.06.033 CrossRefGoogle Scholar
  10. Giatsis C et al (2016) Probiotic legacy effects on gut microbial assembly in tilapia larvae. Sci Rep 6:33965.  https://doi.org/10.1038/srep33965 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Govan JRW (2012) Pseudomonads and non-fermenters: Opportunist infection; cystic fibrosis; melioidosis. In: Greenwood D, Barer M, Slack R, Irving W (eds) Medical microbiology, 18th edn, Churchill Livingstone, Edinburgh, pp 298–304CrossRefGoogle Scholar
  12. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249CrossRefGoogle Scholar
  13. Hossein HS, Yun-Zhang S, Marlowe CC (2017) Short-chain fatty acids as feed supplements for sustainable aquaculture: an updated view. Aquac Res 48:1380–1391 doi.  https://doi.org/10.1111/are.13239 CrossRefGoogle Scholar
  14. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf 11:119.  https://doi.org/10.1186/1471-2105-11-119 CrossRefGoogle Scholar
  15. Jami M, Ghanbari M, Kneifel W, Domig KJ (2015) Phylogenetic diversity and biological activity of culturable Actinobacteria isolated from freshwater fish gut microbiota. Microbiol Res 175:6–15.  https://doi.org/10.1016/j.micres.2015.01.009 CrossRefPubMedGoogle Scholar
  16. Konig H, Li L, Frohlich J (2013) The cellulolytic system of the termite gut. Appl Microbiol Biotechnol 97:7943–7962.  https://doi.org/10.1007/s00253-013-5119-z CrossRefPubMedGoogle Scholar
  17. Krawczyk PS, Lipinski L, Dziembowski A (2018) PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucl Acids Res 46:e35–e35.  https://doi.org/10.1093/nar/gkx1321 CrossRefPubMedGoogle Scholar
  18. Li X, Yu Y, Feng W, Yan Q, Gong Y (2012) Host species as a strong determinant of the intestinal microbiota of fish larvae. J Microbiol 50:29–37.  https://doi.org/10.1007/s12275-012-1340-1 CrossRefPubMedGoogle Scholar
  19. Li T, Long M, Gatesoupe FJ, Zhang Q, Li A, Gong X (2015) Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing. Microbiol Ecol 69:25–36.  https://doi.org/10.1007/s00248-014-0480-8 CrossRefGoogle Scholar
  20. Li D et al (2016) MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102:3–11.  https://doi.org/10.1016/j.ymeth.2016.02.020 CrossRefPubMedGoogle Scholar
  21. Liu H et al (2016) The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci Rep 6:24340.  https://doi.org/10.1038/srep24340 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2014) Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res 169:262–278.  https://doi.org/10.1016/j.micres.2013.07.014 CrossRefPubMedGoogle Scholar
  23. Martinez Cruz P, Ibanez AL, Monroy Hermosillo OA, Ramirez Saad HC (2012) Use of probiotics in aquaculture. ISRN Microbiol 2012:916845.  https://doi.org/10.5402/2012/916845 CrossRefPubMedPubMedCentralGoogle Scholar
  24. McArthur AG et al (2013) The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57:3348–3357.  https://doi.org/10.1128/AAC.00419-13 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Prakash T, Taylor TD (2012) Functional assignment of metagenomic data: challenges and applications. Brief Bioinf 13:711–727.  https://doi.org/10.1093/bib/bbs033 CrossRefGoogle Scholar
  26. Saha AK, Ray AK (1998) Cellulase activity in rohu fingerlings. Aquac Int 6:281–291.  https://doi.org/10.1023/a:1009210929594 CrossRefGoogle Scholar
  27. Satola B, Wübbeler JH, Steinbüchel A (2013) Metabolic characteristics of the species Variovorax paradoxus. Appl Microbiol Biotechnol 97:541–560.  https://doi.org/10.1007/s00253-012-4585-z CrossRefPubMedGoogle Scholar
  28. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069.  https://doi.org/10.1093/bioinformatics/btu153 CrossRefPubMedGoogle Scholar
  29. Singh B, Tyagi A, Kumar BTN, Ansal MD (2018) Prevalence and antimicrobial resistance of vibrios of human health significance in inland saline aquaculture areas. Aquac Res 49:2166–2174 doi.  https://doi.org/10.1111/are.13672 CrossRefGoogle Scholar
  30. Tarnecki AM, Burgos FA, Ray CL, Arias CR (2017) Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. J Appl Microbiol.  https://doi.org/10.1111/jam.13415 CrossRefPubMedGoogle Scholar
  31. Tyagi A, Singh B (2017) Microbial diversity in rohu fish gut and inland saline aquaculture sediment and variations associated with next-generation sequencing of 16S rRNA gene. J Fish Life Sci 2:8Google Scholar
  32. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671CrossRefGoogle Scholar
  33. Wang WL, Xu SY, Ren ZG, Tao L, Jiang JW, Zheng SS (2015) Application of metagenomics in the human gut microbiome. World J Gastroenterol 21:803–814.  https://doi.org/10.3748/wjg.v21.i3.803 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wang AR, Chao R, Einar R, ZZ G (2017) Progress in fish gastrointestinal microbiota research. Rev Aquac 0:15 doi.  https://doi.org/10.1111/raq.12191 CrossRefGoogle Scholar
  35. Wang JH, Lu J, Zhang YX, Wu J, Luo Y, Liu H (2018) Metagenomic analysis of antibiotic resistance genes in coastal industrial mariculture systems. Bioresour Technol 253:235–243.  https://doi.org/10.1016/j.biortech.2018.01.035 CrossRefPubMedGoogle Scholar
  36. Wood DE, Salzberg SL (2014) Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15:R46.  https://doi.org/10.1186/gb-2014-15-3-r46 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wu S, Wang G, Angert ER, Wang W, Li W, Zou H (2012) Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One 7:e30440.  https://doi.org/10.1371/journal.pone.0030440 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Xing M, Hou Z, Yuan J, Liu Y, Qu Y, Liu B (2013) Taxonomic and functional metagenomic profiling of gastrointestinal tract microbiome of the farmed adult turbot (Scophthalmus maximus). FEMS Microbiol Ecol 86:432–443.  https://doi.org/10.1111/1574-6941.12174 CrossRefPubMedGoogle Scholar
  39. Ye Y, Doak TG (2009) A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. PLoS Comput Biol 5:e1000465.  https://doi.org/10.1371/journal.pcbi.1000465 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Aquatic Environment, College of FisheriesGuru Angad Dev Veterinary and Animal Sciences UniversityLudhianaIndia
  2. 2.School of Animal BiotechnologyGuru Angad Dev Veterinary and Animal Sciences UniversityLudhianaIndia

Personalised recommendations