Advertisement

Draft genome and description of Cohnella massiliensis sp. nov., a new bacterial species isolated from the blood culture of a hemodialysis patient

  • Rita Abou Abdallah
  • Jacques Bou Khalil
  • Claudia Andrieu
  • Enora Tomeï
  • Nicholas Armstrong
  • Pierre-Edouard Fournier
  • Didier Raoult
  • Fadi BittarEmail author
Original Paper
  • 20 Downloads

Abstract

Strain 6021052837T was isolated from the blood culture of a hemodialysis patient on Chocolat PolyViteX medium at 37 °C after 2 days of incubation. Colonies could not be identified by our systematic MALDI-TOF Mass Spectrometry screening. The16S rRNA gene sequencing showed that the strain had 96% sequence identity with Cohnella formosensis (Genbank accession number JN806384), the phylogenetic closely related type strain of a species with standing in nomenclature, which putatively classifies it as a new species. The colonies cultivated on Columbia agar with 5% sheep blood medium at 37 °C after 24 h of incubation, are white pigmented, their size varied from 1.5 to 2 mm in diameter. Strain 6021052837T is an aerobic, Gram-negative, motile, spore forming rod, which cannot grow microaerophilically or under anaerobic conditions. The major fatty acids are branched saturated fatty acids: 14-methyl-pentadecanoic acid (34%) and 12-methyl-tetradecanoic acid (31%). The 6.328 Mb long genome, composed of 25 contigs, has a G+C content of 57.24%. Out of the 5710 predicted genes, 5646 were protein-coding genes and 64 were RNAs. A total of 3239 genes (57.37%) were assigned as putative function (by COGs) and 288 genes were identified as ORFans (5.1%). Average genomic identity of orthologous gene sequences (AGIOS) of strain 6021052837T against genomes of the type strains of related species ranged between 58.26 and 79.63%, respectively. According to our taxonogenomics results, we propose the creation of Cohnella massiliensis sp. nov. that contains the type strain 6021052837T (= CSUR P2659, =DSM103435).

Keywords

Cohnella massiliensis Genome analysis Blood Taxono-genomics 

Notes

Acknowledgements

This work was supported by the French Government under the “Investissements d’avenir” (Investments for the Future) program managed by the Agence Nationale de la Recherche (ANR, fr: National Agency for Research) (reference: Méditerranée Infection 10-IAHU-03), and also by the “Fondation Méditerranée Infection”.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

203_2018_1612_MOESM1_ESM.pptx (33 mb)
Supplementary material 1 (PPTX 33831 KB)
203_2018_1612_MOESM2_ESM.pptx (1.6 mb)
Supplementary material 2 (PPTX 1677 KB)
203_2018_1612_MOESM3_ESM.pptx (211 kb)
Supplementary material 3 (PPTX 211 KB)
203_2018_1612_MOESM4_ESM.pptx (296 kb)
Supplementary material 4 (PPTX 295 KB)
203_2018_1612_MOESM5_ESM.xlsx (10 kb)
Supplementary material 5 (XLSX 10 KB)
203_2018_1612_MOESM6_ESM.docx (13 kb)
Supplementary material 6 (DOCX 13 KB)

References

  1. Abdallah RA, Cimmino T, Baron S et al (2017) Description of Chryseobacterium timonianum sp. nov., isolated from a patient with pneumonia. Antonie Van Leeuwenhoek 1–12.  https://doi.org/10.1007/s10482-017-0885-8
  2. Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75.  https://doi.org/10.1186/1471-2164-9-75 CrossRefGoogle Scholar
  3. Bankevich A, Nurk S, Antipov D et al (2012) SPAdes—a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477.  https://doi.org/10.1089/cmb.2012.0021 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bittar F, Keita MB, Lagier JC et al (2014) Gorilla gorilla gorilla gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular tools. Sci Rep 4:7174.  https://doi.org/10.1038/srep07174 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cho E-A, Lee J-S, Lee KC et al (2007) Cohnella laeviribosi sp. nov., isolated from a volcanic pond. Int J Syst Evol Microbiol 57:2902–2907.  https://doi.org/10.1099/ijs.0.64844-0 CrossRefPubMedGoogle Scholar
  7. Conway KR, Boddy CN (2013) ClusterMine360: a database of microbial PKS/NRPS biosynthesis. Nucleic Acids Res 41:D402–D407.  https://doi.org/10.1093/nar/gks993 CrossRefPubMedGoogle Scholar
  8. Dubourg G, Cimmino T, Senkar SA et al (2015) Noncontiguous finished genome sequence and description of Paenibacillus antibioticophila sp. nov. GD11(T), the type strain of Paenibacillus antibioticophila. New Microbes New Infect 8:137–147.  https://doi.org/10.1016/j.nmni.2015.10.006 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Flores-Felix D, Carro J, Ramirez-Bahena L M-H, et al (2014) Cohnella lupini sp nov., an endophytic bacterium isolated from root nodules of Lupinus albus. Int J Syst Evol Microbiol 64:83–87.  https://doi.org/10.1099/ijs.0.050849-0 CrossRefPubMedGoogle Scholar
  10. García-Fraile P, Velázquez E, Mateos PF et al (2008) Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella. Int J Syst Evol Microbiol 58:1855–1859.  https://doi.org/10.1099/ijs.0.65468-0 CrossRefPubMedGoogle Scholar
  11. Gupta SK, Padmanabhan BR, Diene SM et al (2014) ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 58:212–220.  https://doi.org/10.1128/AAC.01310-13 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hameed A, Hung MH, Lin SY et al (2013) Cohnella formosensis sp. nov., a xylanolytic bacterium isolated from the rhizosphere of Medicago sativa L. Int J Syst Evol Microbiol 63:2806–2812.  https://doi.org/10.1099/ijs.0.045831-0 CrossRefPubMedGoogle Scholar
  13. Hyatt D, Chen G-L, LoCascio PF et al (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119.  https://doi.org/10.1186/1471-2105-11-119 CrossRefGoogle Scholar
  14. Jiang F, Dai J, Wang Y et al (2012) Cohnella arctica sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 62:817–821.  https://doi.org/10.1099/ijs.0.030247-0 CrossRefPubMedGoogle Scholar
  15. Kämpfer P, Rosselló-Mora R, Falsen E et al (2006) Cohnella thermotolerans gen. nov., sp. nov., and classification of “Paenibacillus hongkongensis” as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 56:781–786.  https://doi.org/10.1099/ijs.0.63985-0 CrossRefPubMedGoogle Scholar
  16. Khianngam S, Tanasupawat S, Akaracharanya A et al (2010) Cohnella xylanilytica sp nov and Cohnella terrae sp nov., xylanolytic bacteria from soil. Int J Syst Evol Microbiol 60:2913–2917.  https://doi.org/10.1099/ijs.0.017855-0 CrossRefPubMedGoogle Scholar
  17. Khianngam S, Tanasupawat S, Akaracharanya A et al (2012) Cohnella cellulosilytica sp. nov., isolated from buffalo faeces. Int J Syst Evol Microbiol 62:1921–1925.  https://doi.org/10.1099/ijs.0.032607-0 CrossRefPubMedGoogle Scholar
  18. Lagesen K, Hallin P, Rødland EA et al (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108.  https://doi.org/10.1093/nar/gkm160 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Leplae R, Lima-Mendez G, Toussaint A (2010) ACLAME: a classification of mobile genetic elements, update 2010. Nucleic Acids Res 38:D57–D61.  https://doi.org/10.1093/nar/gkp938 CrossRefPubMedGoogle Scholar
  20. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964CrossRefGoogle Scholar
  21. Luo R, Liu B, Xie Y et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 2012 1:1 1:18.  https://doi.org/10.1186/2047-217X-1-18
  22. Morel A-S, Dubourg G, Prudent E et al (2015) Complementarity between targeted real-time specific PCR and conventional broad-range 16S rDNA PCR in the syndrome-driven diagnosis of infectious diseases. Eur J Clin Microbiol Infect Dis 34:561–570.  https://doi.org/10.1007/s10096-014-2263-z CrossRefPubMedGoogle Scholar
  23. Ouk Kim Y, Chun J, Lee I, Park S-C (2016) OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103.  https://doi.org/10.1099/ijsem.0.000760 CrossRefPubMedGoogle Scholar
  24. Ramasamy D, Mishra AK, Lagier J-C et al (2014) A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 64:384–391.  https://doi.org/10.1099/ijs.0.057091-0 CrossRefPubMedGoogle Scholar
  25. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131.  https://doi.org/10.1073/pnas.0906412106 CrossRefGoogle Scholar
  26. Sasser M (2006) Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC-FAME). Technical Note 101. MIDI Inc., Newark, DEGoogle Scholar
  27. Seng P, Drancourt M, Gouriet F et al (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551.  https://doi.org/10.1086/600885 CrossRefPubMedGoogle Scholar
  28. Shiratori H, Tagami Y, Beppu T et al (2010) Cohnella fontinalis sp. nov., a xylanolytic bacterium isolated from fresh water. Int J Syst Evol Microbiol 60:1344–1348.  https://doi.org/10.1099/ijs.0.014605-0 CrossRefPubMedGoogle Scholar
  29. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152&#8211Google Scholar
  30. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739.  https://doi.org/10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wang L-Y, Chen S-F, Wang L et al (2012) Cohnella plantaginis sp. nov., a novel nitrogen-fixing species isolated from plantain rhizosphere soil. Antonie Van Leeuwenhoek 102:83–89.  https://doi.org/10.1007/s10482-012-9715-1 CrossRefPubMedGoogle Scholar
  32. Weisburg WG, Barns SM, Pelletier DA et al (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703.  https://doi.org/10.1128/jb.173.2.697-703.1991 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Xu L, Zhang Y, Wang L et al (2014) Diversity of endophytic bacteria associated with nodules of two indigenous legumes at different altitudes of the Qilian Mountains in China. Syst Appl Microbiol 37:457–465.  https://doi.org/10.1016/j.syapm.2014.05.009 CrossRefPubMedGoogle Scholar
  34. Yoon M-H, Ten LN, Im W-T (2007) Cohnella panacarvi sp. nov., a xylanolytic bacterium isolated from ginseng cultivating soil. J Microbiol Biotechnol 17:913–918PubMedGoogle Scholar
  35. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829.  https://doi.org/10.1101/gr.074492.107 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zhou CE, Smith J, Lam M et al (2007) MvirDB–a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications. Nucleic Acids Res 35:D391–D394.  https://doi.org/10.1093/nar/gkl791 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aix Marseille Univ, IRD, APHM, SSA, VITROME, IHU-Méditerranée InfectionMarseilleFrance
  2. 2.Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée InfectionMarseille Cedex 05France

Personalised recommendations