Archives of Microbiology

, Volume 201, Issue 2, pp 147–154 | Cite as

Pore-forming bacteriocins: structural–functional relationships

  • Alexey S. VasilchenkoEmail author
  • Alexander V. Valyshev


Peptides and proteins are important bioorganic compounds in nature, among which a special place is occupied by antimicrobial substances. There are more than 2000 different antimicrobial peptides (AMPs) produced by a variety of living organisms. Bacteriocins produced by bacteria are the minor group, whose chemical structures are most complicated among all AMPs. The review summarized the main points related to antimicrobial action of the bacteriocins including steps of peptide’s interaction with bacterial membranes and details of membrane damaging. The membrane-disordered bacteriocins were described in accordance with structural–functional relationships.


Bacteriocins Antimicrobial peptides Mode of action Structural–functional relationships 



This work was supported by Russian Foundation for Basic Research (18-34-20058) and the Program of Fundamental Research at the Ural Branch of the Russian Academy of Sciences (project 18-7-8-26). We are grateful to Valeria Evdash (Director of Center for Academic Writing at Tyumen State University) for language assistance.

Compliance with ethical standards

Conflict of interest

The authors confirm that this article content has no conflicts of interest.


  1. Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP (2016) Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 7(100):2939–2951CrossRefGoogle Scholar
  2. Asaduzzaman SM, Sonomoto K (2009) Lantibiotics: diverse activities and unique modes of action. J Biosci Bioeng 107(5):475–487CrossRefGoogle Scholar
  3. Bakhtiary A, Cochrane SA, Mercier P, McKay RT, Miskolzie M, Sit CS, Vederas JC (2017) Insights into the mechanism of action of the two-peptide lantibiotic lacticin 3147. J Am Chem Soc 139(49):17803–17810CrossRefGoogle Scholar
  4. Bonev BB, Breukink E, Swiezewska E, De Kruijff B, Watts A (2004) Targeting extracellular pyrophosphates underpins the high selectivity of nisin. FASEB J 18:1862–1869CrossRefGoogle Scholar
  5. Borrero J, Brede DA, Skaugen M, Diep DB, Herranz C, Nes IF, Cintas LM, Hernández PE (2011) Characterization of garvicin ML, a novel circular bacteriocin produced by Lactococcus garvieae DCC43, isolated from mallard ducks (Anas platyrhynchos). Appl Environ Microbiol 77(1):369–373CrossRefGoogle Scholar
  6. Breukink E, de Kruijff B (2006) Lipid II as a target for antibiotics. Nat Rev Drug Discov 5:321–332CrossRefGoogle Scholar
  7. Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl HG, de Kruijff B (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286:2361–2364CrossRefGoogle Scholar
  8. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250CrossRefGoogle Scholar
  9. Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Cavard D (2007) Colicin biology. Microbiol Mol Biol Rev 71(1):158–229CrossRefGoogle Scholar
  10. Cebrián R, Martínez-Bueno M, Valdivia E, Albert A, Maqueda M, Sánchez-Barrena MJ (2015) The bacteriocin AS-48 requires dimer dissociation followed by hydrophobic interactions with the membrane for antibacterial activity. J Struct Biol 190(2):162–172CrossRefGoogle Scholar
  11. Chen Y, Ludescher RD, Montville TJ (1997a) Electrostatic interactions, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments to phospholipid vesicles. Appl Environ Microbiol 63(12):4770–4777Google Scholar
  12. Chen Y, Shapira R, Eisenstein M, Montville TJ (1997b) Functional characterization of pediocin PA-1 binding to liposomes in the absence of a protein receptor and its relationship to a predicted tertiary structure. Appl Environ Microbiol 63:524–531Google Scholar
  13. Clifton LA, Ciesielski F, Skoda MW, Paracini N, Holt SA, Lakey JH (2016) The Effect of lipopolysaccharide core oligosaccharide size on the electrostatic binding of antimicrobial proteins to models of the Gram negative bacterial outer membrane. Langmuir 32(14):3485–3494. CrossRefGoogle Scholar
  14. Cotter PD, Hill C, Ross RP (2005) Food microbiology: bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788CrossRefGoogle Scholar
  15. Cui Y, Zhang C, Wang Y, Shi J, Zhang L, Ding Z, Qu X, Cui H (2012) Class IIa bacteriocins: diversity and new developments. Int J Mol Sci 13:16668–16707CrossRefGoogle Scholar
  16. Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582CrossRefGoogle Scholar
  17. Ekblad B, Kyriakou PK, Oppegård C, Nissen-Meyer J, Kaznessis YN, Kristiansen PE (2016) Structure–function analysis of the two-peptide bacteriocin plantaricin EF. Biochemistry 55(36):5106–5116. CrossRefGoogle Scholar
  18. El Kouhen R, Bernadac A, Pages JM (1998) Colicin N interaction with sensitive Escherichia coli cells: in situ and kinetic approaches. Res Microbiol 149:645–651CrossRefGoogle Scholar
  19. Etayash H, Azmi S, Dangeti R, Kaur K (2015) Peptide bacteriocins–structure activity relationships. Curr Top Med Chem 16(2):220–241CrossRefGoogle Scholar
  20. Fredericq P (1946) Sur la specificite des actions antibiotiques. Schweiz Z allg Path 9:385Google Scholar
  21. Fredericq P, Gratia A (1949) Résistance croisée à certaines colicines et à certains bactériophages. C R Soc Biol 143:560–561 (Antonie Leeuwenhoek 16:119–121) Google Scholar
  22. Gabrielsen C, Brede DA, Hernández PE, Nes IF, Diep DB (2012) The maltose ABC transporter in Lactococcus lactis facilitates high-level sensitivity to the circular bacteriocin garvicin ML. Antimicrob Agents Chemother 56(6):2908–2915. CrossRefGoogle Scholar
  23. Gálvez A, Maqueda M, Valdivia E, Quesada A, Montoya E (1986) Characterization and partial purification of a broad spectrum antibiotic AS-48 produced by Streptococcus faecalis. Can J Microbiol 32:765–771CrossRefGoogle Scholar
  24. Gálvez A, Maqueda M, Martínez-Bueno M, Valdivia E (1991) Permeation of bacterial cells, permeation of cytoplasmic and artificial membrane vesicles, and channel formation on lipid bilayers by peptide antibiotic AS-48. J Bacteriol 173:886–892CrossRefGoogle Scholar
  25. Garcerá MJ, Elferink MG, Driessen J, Konings WN (1993) In vitro pore-forming activity of the lantibiotic nisin. Role of protonmotive force and lipid composition. Eur J Biochem 212:417–422CrossRefGoogle Scholar
  26. Gong X, Martin-Visscher LA, Nahirney D, Vederas JC, Duszyk M (2009) The circular bacteriocin, carnocyclin A, forms anion-selective channels in lipid bilayers. Biochim Biophys Acta 1788:1797–1803CrossRefGoogle Scholar
  27. Gonzalez C, Langdon G, Bruix M, Galvez A, Valdivia E, Maqueda M, Rico M (2000) Bacteriocin AS-48, a microbial cyclic polypeptide structurally and functionally related to mammalian NK-lysin. Proc Natl Acad Sci USA 97:11221CrossRefGoogle Scholar
  28. Grande Burgos MJ, Pulido RP, Del Carmen López Aguayo M, Gálvez A, Lucas R (2014) The cyclic antibacterial peptide enterocin AS-48: isolation, mode of action, and possible food applications. Int J Mol Sci 15:22706–22727CrossRefGoogle Scholar
  29. Gratia A (1925) Sur un remarquable exemple d’antagonism entre deux souches de Colibacille. C R Soc Biol Paris 93:10–40Google Scholar
  30. Hasper HE, de Kruijff B, Breukink E (2004) Assembly and stability of nisin–lipid II pores. Biochemistry 43(36):11567–11575CrossRefGoogle Scholar
  31. Heng NCK, Tagg JR (2006) What’s in a name? Class distinction for bacteriocins. Nat Rev Microbiol. Google Scholar
  32. Himeno K, Rosengren KJ, Inoue T, Perez RH, Colgrave ML, Lee HS, Chan LY, Henriques ST, Sonomoto K (2015) Identification, characterization, and three-dimensional structure of the novel circular bacteriocin, enterocin NKR-5-3B, from Enterococcus faecium. Biochemistry 54(31):4863–4876CrossRefGoogle Scholar
  33. Hsu STD, Breukink E, Tischenko E, Lutters MAG, De Kruijff B, Kaptein R, Bonvin AMJJ, Van Nuland NAJ (2004) The nisin–lipid ii complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat Struct Mol Biol 11:963CrossRefGoogle Scholar
  34. Hu CB, Malaphan W, Zendo T, Nakayama J, Sonomoto K, Enterocin X (2010) A novel two-peptide bacteriocin from Enterococcus faecium KU-B5, has an antibacterial spectrum entirely different from those of its component peptides. Appl Environ Microbiol 76(13):4542–4545CrossRefGoogle Scholar
  35. Jacob F, Lwoff A, Siminovitch A, Wollman E (1953) Définition de quelques termes relatifs a la lysogénie. Ann Inst Pasteur (Paris) 84(1):222–224Google Scholar
  36. Kawulka KE, Sprules T, Diaper CM, Whittal RM, McKay RT, Mercier P, Zuber P, Vederas JC (2004) Structure of subtilisin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to alpha-carbon cross-links: formation and reduction of alpha-thio-alpha-amino acid derivatives. Biochemistry 43:3385–3395CrossRefGoogle Scholar
  37. Kittikun AH, Biscola V, El-Ghaish S, Jaffrès E, Dousset X, Pillot G, Haertlé T, Chobert J-M, Hwanhlem N (2015) Bacteriocin-producing Enterococcus faecalis KT2W2G isolated from mangrove forests in southern Thailand: purification, characterization and safety evaluation. Food Control 54:126–134CrossRefGoogle Scholar
  38. Kjos M, Salehian Z, Nes IF, Diep DB (2010) An extracellular loop of the mannose phosphotransferase system component IIC is responsible for specific targeting by class IIa bacteriocins. J Bacteriol 192(22):5906–5913. CrossRefGoogle Scholar
  39. Kjos M, Oppegård C, Diep DB, Nes IF, Veening J-W, Nissen-Meyer J, Kristensen T (2014) Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell-wall synthesis. Mol Microbiol 92:1177–1187. CrossRefGoogle Scholar
  40. Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85CrossRefGoogle Scholar
  41. Kyriakou PK, Ekblad B, Kristiansen PE, Kaznessis YN (2016) Interactions of a class IIb bacteriocin with a model lipid bilayer, investigated through molecular dynamics simulations. Biochim Biophys Acta 1858(4):824–835CrossRefGoogle Scholar
  42. Martin I, Ruysschaert JM, Sanders D, Giffard CJ (1996) Interaction of the lantibiotic nisin with membranes revealed by fluorescence quenching of an introduced tryptophan. Eur J Biochem 239(1):156–164CrossRefGoogle Scholar
  43. Martin-Visscher LA, van Belkum MJ, Garneau-Tsodikova S, Whittal RM, Zheng J, McMullen LM, Vederas JC (2008) Isolation and characterization of carnocyclin A, a novel circular bacteriocin produced by Carnobacterium maltaromaticum UAL307. Appl Environ Microbiol 74(15):4756–4763CrossRefGoogle Scholar
  44. Martin-Visscher LA, Gong X, Duszyk M, Vederas JC (2009) The three-dimensional structure of carnocyclin A reveals that many circular bacteriocins share a common structural motif. J Biol Chem 284:28674–28681CrossRefGoogle Scholar
  45. Marx R, Stein T, Entian KD, Glaser SJ (2001) Structure of the Bacillus subtilis peptide antibiotic subtilosin A determined by 1H-NMR and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. J Protein Chem 20(6):501–506CrossRefGoogle Scholar
  46. Masuda Y, Ono H, Kitagawa H, Ito H, Mu F, Sawa N, Zendo T, Sonomoto K (2011) Identification and characterization of leucocyclicin Q, a novel cyclic bacteriocin produced by Leuconostoc mesenteroides TK41401. Appl Environ Microbiol 77(22):8164–8170CrossRefGoogle Scholar
  47. Mathur H, Fallico V, O’Connor PM, Rea MC, Cotter PD, Hill C, Ross RP (2017) Insights into the mode of action of the sactibiotic thuricin CD. Front Microbiol 8:696. CrossRefGoogle Scholar
  48. Morgan SM, O’Connor PM, Cotter PD, Ross RP, Hill C (2005) Sequential actions of the two component peptides of the lantibiotic 3147 explain its antimicrobial activity at nanomolar concentrations. Antimicrob Agents Chemother 49:2606–2611CrossRefGoogle Scholar
  49. Nieto Lozano JC, Meyer JN, Sletten K, Peláz C, Nes IF (1992) Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. J Gen Microbiol 138(9):1985–1990CrossRefGoogle Scholar
  50. Nissen-Meyer J, Oppegård C, Rogne P, Kristiansen PE (2010) Structure and mode-of-action of the two-peptide (class-IIb) bacteriocins. Probiotics Antimicrob Proteins 2:52. CrossRefGoogle Scholar
  51. Oppegård C, Kjos M, Veening JW, Nissen-Meyer J, Kristensen T (2016) A putative amino acid transporter determines sensitivity to the two-peptide bacteriocin plantaricin JK. MicrobiologyOpen 5:700CrossRefGoogle Scholar
  52. Ovchinnikov KV, Chi H, Mehmeti I, Holo H, Nes IF, Diep DB (2016) Novel group of leaderless multipeptide bacteriocins from Gram-positive bacteria. Appl Environ Microbiol 82(17):5216–5224. CrossRefGoogle Scholar
  53. Prince A, Sandhu P, Kumar P, Dash E, Sharma S, Arakha M, Saleem M (2016) Lipid-II independent antimicrobial mechanism of nisin depends on its crowding and degree of oligomerization. Sci Rep 6:37908. CrossRefGoogle Scholar
  54. Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137CrossRefGoogle Scholar
  55. Rogne P, Haugen C, Fimland G, Nissen-Meyer J, Kristiansen PE (2009) Three-dimensional structure of the two-peptide bacteriocin plantaricin JK. Peptides 30:1613–1621CrossRefGoogle Scholar
  56. Sánchez-Barrena M, Martínez-Ripoll G, Gálvez A, Valdivia E, Maqueda M, Cruz V, Albert A (2003) Structure of bacteriocin AS-48: from soluble state to membrane bound state. J Mol Biol 334:541–549CrossRefGoogle Scholar
  57. Shenkarev OZ, Finkina EI, Nurmukhamedova EK, Balandin SV, Mineev SV, Nadezhdin KD, Yakimenko ZA, Tagaev AA, Temirov YuV, Arseniev SA, Ovchinnikova TV (2010) Isolation, structure elucidation, and synergistic antibacterial activity of a novel two-component lantibiotic lichenicidin from Bacillus licheniformis VK21. Biochemistry 49(30):6462–6472CrossRefGoogle Scholar
  58. Shokri D, Zaghian S, Khodabakhsh F, Fazeli H, Mobasherizadeh S, Ataei B (2014) Antimicrobial activity of a UV-stable bacteriocin-like inhibitory substance (BLIS) produced by Enterococcus faecium strain DSH20 against vancomycin-resistant Enterococcus (VRE) strains. J Microbiol Immunol Infect 47(5):371–376. CrossRefGoogle Scholar
  59. Simenovics G (1962) Bacteriocins and bacteriocin-like substances. Bacteriol Rev 26(2 Pt 1–2):108–118Google Scholar
  60. Sobko AA, Kotova EA, Antonenko YN, Zakharov SD, Cramer AW (2006) Lipid dependence of the channel properties of a colicin E1-lipid toroidal pore. J Biol Chem 281:14408–14416CrossRefGoogle Scholar
  61. Thennarasu S, Lee DK, Poon A, Kawulka KE, Vederas JC, Ramamoorthy A (2005) Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A. Chem Phys Lipids 137:38–51CrossRefGoogle Scholar
  62. Uteng M, Hauge HH, Markwick PR, Fimland G, Mantzilas D, Nissen-Meyer J, Muhle-Goll C (2003) Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochemistry 42:11417CrossRefGoogle Scholar
  63. Uzelac G, Kojic M, Lozo J, Aleksandrzak-Piekarczyk T, Gabrielsen C, Kristensen T, Nes IF, Diep DB, Topisirovic L (2013) A Zn-dependent metallopeptidase is responsible for sensitivity to LsbB, a class II leaderless bacteriocin of Lactococcus lactis subsp. lactis BGMN1-5. J Bacteriol 195:5614–5621. CrossRefGoogle Scholar
  64. van Kuijk S, Noll KS, Chikindas ML (2012) The species-specific mode of action of the antimicrobial peptide subtilosin against Listeria monocytogenes Scott A. Lett Appl Microbiol 54(1):52–58CrossRefGoogle Scholar
  65. Vasilchenko AS, Rogozhin EA, Valyshev AV (2017) Purification of a novel bacteriocin-like inhibitory substance produced by Enterococcus faecium ICIS 8 and characterization of its mode of action. Microb Drug Resist 23(4):447–456. CrossRefGoogle Scholar
  66. Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093CrossRefGoogle Scholar
  67. Wiedemann I, Benz R, Sahl HG (2004) Lipid II-mediated pore formation by the peptide antibiotic nisin: a black lipid membrane study. J Bacteriol 186:3259–3261CrossRefGoogle Scholar
  68. Wiedemann I, Böttiger T, Bonelli RR, Wiese A, Hagge SO, Gutsmann T, Seydel U, Deegan L, Hill C, Ross P, Sahl HG (2006) The mode of action of the lantibiotic lacticin 3147—a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Mol Microbiol 61(2):285–296CrossRefGoogle Scholar
  69. Wirawan RE, Swanson KM, Kleffmann T, Jack RW, Tagg JR (2007) Uberolysin: a novel cyclic bacteriocin produced by Streptococcus uberis. Microbiology 153:1619–1630CrossRefGoogle Scholar
  70. Xin B, Zheng J, Liu H, Li J, Ruan L, Peng D, Sajid M, Sun M (2016) Thusin, a novel two-component lantibiotic with potent antimicrobial activity against several Gram-positive pathogens. Front Microbiol 7:1115CrossRefGoogle Scholar
  71. Yoneyama F, Imura Y, Ohno K, Zendo T, Nakayama J, Matsuzaki K, Sonomoto K (2009) Peptide-lipid huge toroidal pore, a new antimicrobial mechanism mediated by a lactococcal bacteriocin, lacticin Q. Antimicrob Agents Chemother 53:3211–3217. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alexey S. Vasilchenko
    • 1
    Email author
  • Alexander V. Valyshev
    • 2
  1. 1.Tyumen State UniversityTyumenRussian Federation
  2. 2.Institute of Cellular and Intracellular SymbiosisUral Branch of the Russian Academy of SciencesOrenburgRussian Federation

Personalised recommendations