Advertisement

Archives of Microbiology

, Volume 201, Issue 1, pp 1–16 | Cite as

Cold survival strategies for bacteria, recent advancement and potential industrial applications

  • Amit S. Dhaulaniya
  • Biji Balan
  • Mohit kumar
  • Pawan K. Agrawal
  • Dileep Kumar SinghEmail author
Mini-Review
  • 174 Downloads

Abstract

Microorganisms have evolved themselves to thrive under various extreme environmental conditions such as extremely high or low temperature, alkalinity, and salinity. These microorganisms adapted several metabolic processes to survive and reproduce efficiently under such extreme environments. As the major proportion of earth is covered with the cold environment and is exploited by human beings, these sites are not pristine anymore. Human interventions are a great reason for disturbing the natural biogeochemical cycles in these regions. The survival strategies of these organisms have shown great potential for helping us to restore these pristine sites and the use of isolated cold-adapted enzymes from these organisms has also revolutionized various industrial products. This review gives you the insight of psychrophilic enzyme adaptations and their industrial applications.

Keywords

Psychrophiles Cold-active enzyme Industrial applications Bioremediation Anti-freezing proteins 

Notes

Acknowledgements

Financial assistance provided by NASF research grant (project entitled “Bioremediation of chemical contaminants and their complexes present in drainage water with high dynamic flux used for irrigation in urban and periurban agriculture”), sanction no. NASF/CA-6030/2017-18 is highly acknowledged. The first author is obliged to CSIR-UGC JRF Fellowship, University Grant Commission (UGC), Government of India, for providing the stipend.

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.

References

  1. Aehle W (2007) Enzymes in industry: production and applications. Wiley, HobokenGoogle Scholar
  2. Aghajari N, Feller G, Gerday C, Haser R (1998) Structures of the psychrophilic Alteromonashaloplanctis α-amylase give insights into cold adaptation at a molecular level. Structure 6(12):1503–1516PubMedGoogle Scholar
  3. Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D (2001) Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J 20(7):1681–1691PubMedPubMedCentralGoogle Scholar
  4. Ali M, Shukuri M, Fuzi M, Farhanie S, Ganasen M, Rahman A, Salleh AB (2013) Structural adaptation of cold-active RTX lipase from Pseudomonas sp. strain AMS8 revealed via homology and molecular dynamics simulation approaches. BioMed Res IntGoogle Scholar
  5. Arcus VL, Prentice EJ, Hobbs JK, Mulholland AJ, Van der Kamp MW, Pudney CR, … Schipper LA (2016) On the temperature dependence of enzyme-catalyzed rates. Biochemistry 55(12):1681–1688PubMedGoogle Scholar
  6. Aslam SN, Underwood GJ, Kaartokallio H, Norman L, Autio R, Fischer M, Thomas DN (2012) Dissolved extracellular polymeric substances (dEPS) dynamics and bacterial growth during sea ice formation in an ice tank study. Polar Biol 35(5):661–676Google Scholar
  7. Ayala-del-Río HL, Chain PS, Grzymski JJ, Ponder MA, Ivanova N, Bergholz PW, … Rodrigues D (2010) The genome sequence of Psychrobacterarcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl Environ Microbiol 76(7):2304–2312PubMedPubMedCentralGoogle Scholar
  8. Aznauryan M, Nettels D, Holla A, Hofmann H, Schuler B (2013) Single-molecule spectroscopy of cold denaturation and the temperature-induced collapse of unfolded proteins. J Am Chem Soc 135(38):14040–14043PubMedGoogle Scholar
  9. Badieyan S, Bevan DR, Zhang C (2012) Study and design of stability in GH5 cellulases. Biotechnol Bioeng 109(1):31–44PubMedGoogle Scholar
  10. Bajaj S, Singh DK (2015) Biodegradation of persistent organic pollutants in soil, water and pristine sites by cold-adapted microorganisms: mini review. Int Biodeter Biodegr 100:98–105Google Scholar
  11. Bargagli R (2008) Environmental contamination in Antarctic ecosystems. Sci Total Environ 400(1):212–226PubMedGoogle Scholar
  12. Barria C, Malecki M, Arraiano CM (2013) Bacterial adaptation to cold. Microbiology 159(12):2437–2443PubMedGoogle Scholar
  13. Basheer SA, Thenmozhi M (2010) Reverse micellar separation of lipases: a critical review. Int J Chem Sci 8(5):57–67Google Scholar
  14. Berlemont R, Delsaute M, Pipers D, D’amico S, Feller G, Galleni M, Power P (2009) Insights into bacterial cellulose biosynthesis by functional metagenomics on Antarctic soil samples. ISME J 3(9):1070PubMedGoogle Scholar
  15. Białkowska AM, Cieśliński H, Nowakowska KM, Kur J, Turkiewicz M (2009) A new β-galactosidase with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: gene cloning, purification and characterization. Arch Microbiol 191(11):825–835PubMedGoogle Scholar
  16. Bowman JS, Deming JW (2014) Alkane hydroxylase genes in psychrophile genomes and the potential for cold-active catalysis. BMC Genomics 15(1):1120PubMedPubMedCentralGoogle Scholar
  17. Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82(2):217–241PubMedGoogle Scholar
  18. Cavicchioli R, Charlton T, Ertan H, Omar SM, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microbial Biotechnol 4(4):449–460Google Scholar
  19. Chattopadhyay MK (2006) Mechanism of bacterial adaptation to low temperature. J Biosci 31(1):157–165PubMedGoogle Scholar
  20. Chattopadhyay M, Jagannadham M (2001) Maintenance of membrane fluidity in Antarctic bacteria. Polar Biol 24(5):386–388Google Scholar
  21. Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol (Noisy-le-Grand. France) 50(5):631–642Google Scholar
  22. Cipolla A, D’Amico S, Barumandzadeh R, Matagne A, Feller G (2011) Stepwise adaptations to low temperature as revealed by multiple mutants of psychrophilic α-amylase from Antarctic bacterium. J Biol Chem 286(44):38348–38355PubMedPubMedCentralGoogle Scholar
  23. Collins T, Meuwis MA, Gerday C, Feller G (2003) Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J Mol Biol 328(2):419–428PubMedGoogle Scholar
  24. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29(1):3–23PubMedGoogle Scholar
  25. Coquelle N, Fioravanti E, Weik M, Vellieux F, Madern D (2007) Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. J Mol Biol 374(2):547–562PubMedGoogle Scholar
  26. Creighton TE (1991) Stability of folded conformations: Current opinion in structural biology 1991. Curr Opin Struct Biol 1(1):5–16 1), 5–16.Google Scholar
  27. D’Amico S, Gerday C, Feller G (2001) Structural determinants of cold adaptation and stability in a large protein. J Biol Chem 276(28):25791–25796PubMedGoogle Scholar
  28. D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7(4):385–389PubMedPubMedCentralGoogle Scholar
  29. Dalmaso GZL, Ferreira D, &Vermelho AB (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13(4):1925–1965PubMedPubMedCentralGoogle Scholar
  30. Damhus T, Kaasgaard S, Olsen HS (eds) (2013) Enzymes at work. NovozymesGoogle Scholar
  31. DasSarma S, Capes MD, Karan R, DasSarma P (2013) Amino acid substitutions in cold-adapted proteins from Halorubrum lacusprofundi, an extremely halophilic microbe from Antarctica. PLoS One, 8(3):e58587Google Scholar
  32. De Los Ríos A, Grube M, Sancho LG, Ascaso C (2006) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59(2):386–395Google Scholar
  33. De Maayer P, Anderson D, Cary C, Cowan DA (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO reports, e201338170Google Scholar
  34. De Santi C, Leiros HKS, Di Scala A, de Pascale D, Altermark B, Willassen NP (2016) Biochemical characterization and structural analysis of a new cold-active and salt-tolerant esterase from the marine bacterium Thalassospira sp. Extremophiles 20(3):323–336PubMedGoogle Scholar
  35. Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5(3):301–309PubMedGoogle Scholar
  36. Dick M, Weiergräber OH, Classen T, Bisterfeld C, Bramski J, Gohlke H, Pietruszka J (2016) Trading off stability against activity in extremophilic aldolases. Sci Rep 6:17908PubMedPubMedCentralGoogle Scholar
  37. Do H, Lee JH, Kwon MH, Song HE, An JY, Eom SH, … Kim HJ (2013) Purification, characterization and preliminary X-ray diffraction analysis of a cold-active lipase (CpsLip) from the psychrophilic bacterium Colwellia psychrerythraea 34H. Acta Crystallographica Section F. Struct Biol Cryst Commun 69(8):920–924Google Scholar
  38. Dolev MB, Bernheim R, Guo S, Davies PL, Braslavsky I (2016) Putting life on ice: bacteria that bind to frozen water. J R Soc Interface 13(121):20160210PubMedPubMedCentralGoogle Scholar
  39. Duman JG, Olsen TM (1993) Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30(3):322–328Google Scholar
  40. Emampour M, Noghabi KA, Zahiri HS (2015) Molecular cloning and biochemical characterization of a novel cold-adapted alpha-amylase with multiple extremozyme characteristics. J Mol Catal B Enzymatic 111:79–86Google Scholar
  41. Esteban-Torres M, Mancheño JM, de las Rivas B, Muñoz R (2014) Characterization of a cold-active esterase from Lactobacillus plantarum suitable for food fermentations. J Agric Food Chem 62(22):5126–5132PubMedGoogle Scholar
  42. Esteban-Torres M, Mancheño JM, de las Rivas B, Muñoz R (2015) Characterization of a halotolerant lipase from the lactic acid bacteria Lactobacillus plantarum useful in food fermentations. LWT-Food Sci Technol 60(1):246–252Google Scholar
  43. Eyring H (1935) The activated complex and the absolute rate of chemical reactions. Chem Rev 17(1):65–77Google Scholar
  44. Fan X, Liang W, Li Y, Li H, Liu X (2017) Identification and immobilization of a novel cold-adapted esterase, and its potential for bioremediation of pyrethroid-contaminated vegetables. Microbial Cell Factories 16(1):149PubMedPubMedCentralGoogle Scholar
  45. Fedøy AE, Yang N, Martinez A, Leiros HKS, Steen IH (2007) Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability. J Mol Biol 372(1):130–149PubMedGoogle Scholar
  46. Feeney RE, Yeh Y (1998) Antifreeze proteins: current status and possible food uses. Trends Food Sci Technol 9(3):102–106Google Scholar
  47. Feller G (2003) Molecular adaptations to cold in psychrophilic enzymes. CMLS 60(4):648–662PubMedGoogle Scholar
  48. Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. ScientificaGoogle Scholar
  49. Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. CMLS 53(10):830–841PubMedGoogle Scholar
  50. Feller G, Payan F, Theys F, Qian M, Haser R, Gerday C (1994) Stability and structural analysis of α-amylase from the antarctic psychrophile Alteromonas haloplanctis A23. Eur J Biochem 222(2):441–447PubMedGoogle Scholar
  51. Feng S, Powell SM, Wilson R, Bowman JP (2013) Light-stimulated growth of proteorhodopsin-bearing sea-ice psychrophile Psychroflexustorquis is salinity dependent. ISME J 7(11):2206PubMedPubMedCentralGoogle Scholar
  52. Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci 95(19):11476–11481PubMedGoogle Scholar
  53. Frank S, Schmidt F, Klockgether J, Davenport CF, Gesell Salazar M, Völker U, Tümmler B (2011) Functional genomics of the initial phase of cold adaptation of Pseudomonas putida KT2440. FEMS Microbiol Lett 318(1):47–54PubMedGoogle Scholar
  54. Gai N, Pan J, Tang H, Chen S, Chen D, Zhu X, … Yang Y (2014) Organochlorine pesticides and polychlorinated biphenyls in surface soils from Ruoergai high altitude prairie, east edge of Qinghai-Tibet Plateau. Sci Total Environ 478:90–97PubMedGoogle Scholar
  55. Ganjalikhany MR, Ranjbar B, Taghavi AH, Moghadam TT (2012) Functional motions of Candida antarctica lipase B: a survey through open-close conformations. PLoS One 7(7):e40327PubMedPubMedCentralGoogle Scholar
  56. Garsoux G, Lamotte J, Gerday C, Feller G (2004) Kinetic and structural optimization to catalysis at low temperatures in a psychrophilic cellulase from the Antarctic bacterium Pseudoalteromonashaloplanktis. Biochem J 384(2):247–253PubMedPubMedCentralGoogle Scholar
  57. Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28(1), 25–42PubMedGoogle Scholar
  58. Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, … Hoyoux A (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18(3):103–107PubMedGoogle Scholar
  59. Gilbert JA, Davies PL, Laybourn-Parry J (2005) A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol Lett 245(1):67–72PubMedGoogle Scholar
  60. Goodchild A, Raftery M, Saunders NF, Guilhaus M, Cavicchioli R (2004) Biology of the cold adapted archaeon, methanococcoides b urtonii determined by proteomics using liquid chromatography–tandem mass spectrometry. J Proteome Res 3(6):1164–1176PubMedGoogle Scholar
  61. Goodey NM, Benkovic SJ (2008) Allosteric regulation and catalysis emerge via a common route. Nat Chem Biol 4(8):474PubMedGoogle Scholar
  62. Goomber S, Kumar A, Singh R, Kaur J (2016) Point mutation ile137-Met near surface conferred psychrophilic behaviour and improved catalytic efficiency to bacillus lipase of 1.4 subfamily. Appl Biochem Biotechnol 178(4):753–765PubMedGoogle Scholar
  63. Goutte A, Chevreuil M, Alliot F, Chastel O, Cherel Y, Eléaume M, Massé G (2013) Persistent organic pollutants in benthic and pelagic organisms off Adélie Land, Antarctica. Mar Pollut Bull 77(1):82–89PubMedGoogle Scholar
  64. Graziano G (2014) On the mechanism of cold denaturation. Phys Chem Chem Phys 16(39):21755–21767PubMedGoogle Scholar
  65. Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H, Antranikian G (2004) Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice. Spitzbergen Extremophiles 8(6):475–488PubMedGoogle Scholar
  66. Gulevsky AK, Relina LI (2013) Molecular and genetic aspects of protein cold denaturation. CryoLetters 34(1):62–82PubMedGoogle Scholar
  67. Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res IntGoogle Scholar
  68. Hanada Y, Nishimiya Y, Miura A, Tsuda S, Kondo H (2014) Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences. FEBS J 281(16):3576–3590PubMedGoogle Scholar
  69. Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450(7172):964PubMedGoogle Scholar
  70. Hildebrandt P, Wanarska M, Kur J (2009) A new cold-adapted β-d-galactosidase from the Antarctic Arthrobacter sp. 32c-gene cloning, overexpression, purification and properties. BMC Microbiol 9(1):1Google Scholar
  71. Hong S, Lee C, Jang SH (2012) Purification and properties of an extracellular esterase from a cold-adapted Pseudomonas mandelii. Biotechnol Lett 34(6):1051–1055PubMedGoogle Scholar
  72. Iftikhar T, Niaz M, Jabeen R, Haq IU (2011) Purification and characterization of extracellular lipases. Pak J Bot 43(3):1541–1545Google Scholar
  73. Jackson RG, Rylott EL, Fournier D, Hawari J, Bruce NC (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci 104(43):16822–16827PubMedGoogle Scholar
  74. Jadhav VV, Pote SS, Yadav A, Shouche YS, Bhadekar RK (2013) Extracellular cold-active lipase from the psychrotrophic Halomonas sp. BRI 8 isolated from the Antarctic sea water. Songklanakarin J Sci Technol 35(6)Google Scholar
  75. Jeon JH, Kim JT, Kim YJ, Kim HK, Lee HS, Kang SG, … Lee JH (2009) Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome. Appl Microbiol Biotechnol 81(5):865–874PubMedGoogle Scholar
  76. Ji X, Chen G, Zhang Q, Lin L, Wei Y (2015) Purification and characterization of an extracellular cold-adapted alkaline lipase produced by psychrotrophic bacterium Yersinia enterocolitica strain KM1. J Basic Microbiol 55(6):718–728PubMedGoogle Scholar
  77. Jiang H, Zhang S, Gao H, Hu N (2016) Characterization of a cold-active esterase from Serratia sp. and improvement of thermostability by directed evolution. BMC Biotechnol 16(1):7PubMedPubMedCentralGoogle Scholar
  78. Joseph B, Ramteke PW, Thomas G (2008) Cold-active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26(5):457–470PubMedGoogle Scholar
  79. Joseph B, Upadhyaya S, Ramteke P (2011) Production of cold-active bacterial lipases through semisolid state fermentation using oil cakes. Enzyme ResGoogle Scholar
  80. Jung SK, Jeong DG, Lee MS, Lee JK, Kim HK, Ryu SE, Kim SJ (2008) Structural basis for the cold adaptation of psychrophilic M37 lipase from Photobacterium lipolyticum. Proteins: Struct Funct Bioinf 71(1):476–484Google Scholar
  81. Kahlke T, Thorvaldsen S (2012) Molecular characterization of cold adaptation of membrane proteins in the Vibrionaceae core-genome. PLoS One 7(12):e51761PubMedPubMedCentralGoogle Scholar
  82. Kamekura M (1998) Diversity of extremely halophilic bacteria. Extremophiles 2(3):289–295PubMedGoogle Scholar
  83. Karasova PETRA, Spiwok VO, J. T. ĚCH, Mala S, Kralova BLANKA, Russell NJ (2002) Beta-galactosidase activity in psychrotrophic microorganisms and their potential use in food industry. Czech J Food Sci 20(2):43–47Google Scholar
  84. Kashif A, Tran LH, Jang SH, Lee C (2017) Roles of active-site aromatic residues in cold adaptation of Sphingomonas glacialis Esterase EstSP1. ACS Omega 2(12):8760–8769Google Scholar
  85. Kato C (2008) Protein adaptation to high-pressure environments. Rev High Pressure Sci Technol 18(2)Google Scholar
  86. Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64(4):1510–1513PubMedPubMedCentralGoogle Scholar
  87. Kim HJ, Lee YJ, Gao W, Chung CH, Son CW, Lee JW (2011) Statistical optimization of fermentation conditions and comparison of their influences on production of cellulases by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using orthogonal array method. Biotechnol Bioproc Eng 16(3):542–548Google Scholar
  88. Kim SM, Park H, Choi JI (2017) Cloning and characterization of cold-adapted α-amylase from antarctic Arthrobacteragilis. Appl Biochem Biotechnol 181(3):1048–1059PubMedGoogle Scholar
  89. Kokkinidis M, Glykos NM, Fadouloglou VE (2012) Protein flexibility and enzymatic catalysis. In: Advances in protein chemistry and structural biology, vol 87. Academic Press, pp 181–218Google Scholar
  90. Kovacic F, Mandrysch A, Poojari C, Strodel B, Jaeger KE (2015) Structural features determining thermal adaptation of esterases. Protein Eng Des Select 29(2):65–76Google Scholar
  91. Kristiansen E, Ramløv H, Højrup P, Pedersen SA, Hagen L, Zachariassen KE (2011) Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor. Insect Biochem Mol Biol 41(2):109–117PubMedGoogle Scholar
  92. Kuddus M, Ramteke PW (2012) Recent developments in production and biotechnological applications of cold-active microbial proteases. Crit Rev Microbiol 38(4):330–338PubMedGoogle Scholar
  93. Laidler KJ (1984) The development of the Arrhenius equation. J Chem Educ 61(6):494Google Scholar
  94. Lee RE, Warren GJ, Gusta LV (1995) Biological ice nucleation and its applicationsGoogle Scholar
  95. Lee JK, Park KS, Park S, Park H, Song YH, Kang SH, Kim HJ (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60(2):222–228PubMedGoogle Scholar
  96. Lee HW, Jeon HY, Choi HJ, Kim NR, Choung WJ, Koo YS, … Shim JH (2016) Characterization and application of BiLA, a psychrophilic α-amylase from Bifidobacterium longum. J Agric Food Chem 64(13):2709–2718PubMedGoogle Scholar
  97. Lee C, Jang SH, Chung HS (2017) Improving the stability of cold-adapted enzymes by immobilization. Catalysts 7(4):112Google Scholar
  98. Leonov SL (2010) Screening for novel cold-active lipases from wild type bacteria isolates. Innov Roman Food Biotechnol 6:12Google Scholar
  99. Li M, Yang LR, Xu G, Wu JP (2013) Screening, purification and characterization of a novel cold-active and organic solvent-tolerant lipase from Stenotrophomonas maltophilia CGMCC 4254. Bioresour Technol 148:114–120PubMedGoogle Scholar
  100. Li S, Yang X, Zhang L, Yu W, Han F (2015) Cloning, expression, and characterization of a cold-adapted and surfactant-stable alginate lyase from marine bacterium Agarivorans sp. J Microbiol Biotechnol 25(5):681–686PubMedGoogle Scholar
  101. Lian K, Leiros HKS, Moe E (2015) MutT from the fish pathogen Aliivibriosalmonicida is a cold-active nucleotide-pool sanitization enzyme with unexpectedly high thermostability. FEBS Open Biol 5:107–116Google Scholar
  102. Lonhienne T, Gerday C, Feller G (2000). Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta (BBA) Protein Struct Mol Enzymol 1543(1), 1–10Google Scholar
  103. Lorv JS, Rose DR, Glick BR (2014) Bacterial ice crystal controlling proteins. Scientifica, 2014Google Scholar
  104. Lu M, Wang S, Fang Y, Li H, Liu S, Liu H (2010) Cloning, expression, purification, and characterization of cold-adapted α-amylase from Pseudoalteromonas arctica GS230. Protein J 29(8):591–597PubMedGoogle Scholar
  105. Lu Z, Wang Q, Jiang S, Zhang G, Ma Y (2016) Truncation of the unique N-terminal domain improved the thermos-stability and specific activity of alkaline α-amylase Amy703. Sci Rep 6:22465PubMedPubMedCentralGoogle Scholar
  106. Mahdavi A, Hassan Sajedi R, Rassa M, Jafarian V (2010) Characterization of an a-amylase with broad temperature activity from an acid-neutralizing Bacillus cereus strain. Iran J Biotechnol 8(2):103–111Google Scholar
  107. Maiangwa J, Ali MSM, Salleh AB, Rahman RNZRA, Shariff FM, Leow TC (2015) Adaptational properties and applications of cold-active lipases from psychrophilic bacteria. Extremophiles 19(2):235–247PubMedGoogle Scholar
  108. Maraite A, Hoyos P, Carballeira JD, Cabrera ÁC, Ansorge-Schumacher MB, Alcántara AR (2013) Lipase from Pseudomonas stutzeri: purification, homology modelling and rational explanation of the substrate binding mode. J Mol Catal B: Enzymatic 87:88–98Google Scholar
  109. Margesin R (2000) Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils. Int Biodeterior biodegrad 46(1):3–10Google Scholar
  110. Marshall CJ (1997) Cold-adapted enzymes. Trends Biotechnol 15(9):359–364PubMedGoogle Scholar
  111. Marx JC, Collins T, D’Amico S, Feller G, Gerday C (2007) Cold-adapted enzymes from marine Antarctic microorganisms. Mar Biotechnol 9(3):293–304PubMedGoogle Scholar
  112. Master ER, Mohn WW (1998) Psychrotolerant bacteria isolated from Arctic soil that degrade polychlorinated biphenyls at low temperatures. Appl Environ Microbiol 64(12):4823–4829PubMedPubMedCentralGoogle Scholar
  113. Mateo C, Monti R, Pessela BC, Fuentes M, Torres R, Manuel Guisán J, Fernández-Lafuente R (2004) Immobilization of lactase from Kluyveromyces lactis greatly reduces the inhibition promoted by glucose. Full hydrolysis of lactose in milk. Biotechnol Prog 20(4):1259–1262PubMedGoogle Scholar
  114. Michaux C, Massant J, Kerff F, Frère JM, Docquier JD, Vandenberghe I, Van Beeumen J (2008) Crystal structure of a cold-adapted class C β-lactamase. FEBS J 275(8):1687–1697PubMedGoogle Scholar
  115. Middleton AJ, Brown AM, Davies PL, Walker VK (2009) Identification of the ice-binding face of a plant antifreeze protein. FEBS Lett 583(4):815–819PubMedGoogle Scholar
  116. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39(2):144PubMedPubMedCentralGoogle Scholar
  117. Mukhopadhyay A, Dasgupta AK, Chakrabarti K (2015) Enhanced functionality and stabilization of a cold-active laccase using nanotechnology based activation-immobilization. Bioresour Technol 179:573–584PubMedGoogle Scholar
  118. Mykytczuk NC, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG (2013) Bacterial growth at − 15 C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 7(6):1211PubMedPubMedCentralGoogle Scholar
  119. Nagarajan S (2012) New tools for exploring “old friends—microbial lipases”. Appl Biochem Biotechnol 168(5):1163–1196PubMedGoogle Scholar
  120. Narinx E, Baise E, Gerday C (1997) Subtilisin from psychrophilic antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold. Protein Eng 10(11):1271–1279PubMedGoogle Scholar
  121. Nielsen PH (2005) Life cycle assessment supports cold-wash enzymes. SÖFW-J 131(10), 24–26Google Scholar
  122. Nielsen PH, Skagerlind P (2007) Cost-neutral replacement of surfactants with enzymes-a short-cut to environmental improvement for laundry washing. Househ Pers Care Today 4:3–7Google Scholar
  123. Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3(3):597–611PubMedPubMedCentralGoogle Scholar
  124. Novototskaya-Vlasova K, Petrovskaya L, Yakimov S, Gilichinsky D (2012) Cloning, purification, and characterization of a cold-adapted esterase produced by Psychrobactercryohalolentis K5T from Siberian cryopeg. FEMS Microbiol Ecol 82(2):367–375PubMedGoogle Scholar
  125. Peterson ME, Daniel RM, Danson MJ, Eisenthal R (2007) The dependence of enzyme activity on temperature: determination and validation of parameters. Biochem J 402(2):331–337PubMedPubMedCentralGoogle Scholar
  126. Petrescu I, Lamotte-Brasseur J, Chessa JP, Ntarima P, Claeyssens M, Devreese B, Gerday C (2000) Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles 4(3):137–144PubMedGoogle Scholar
  127. Ramírez-Sarmiento CA, Baez M, Wilson CA, Babul J, Komives EA, Guixé V (2013) Observation of solvent penetration during cold denaturation of E. coli phosphofructokinase-2. Biophys J 104(10):2254–2263PubMedPubMedCentralGoogle Scholar
  128. Ramli ANM, Azhar MA, Shamsir MS, Rabu A, Murad AMA, Mahadi NM, Illias RM (2013) Sequence and structural investigation of a novel psychrophilic α-amylase from Glaciozyma antarctica PI12 for cold-adaptation analysis. J Mol Model 19(8):3369–3383PubMedGoogle Scholar
  129. Ramnath L, Sithole B, Govinden R (2016) Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can J Microbiol 63(3):179–192PubMedGoogle Scholar
  130. Rapp P, Gabriel-Jürgens LH (2003) Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiology 149(10):2879–2890PubMedGoogle Scholar
  131. Ratkowsky DA, Olley J, McMeekin TA, Ball A (1982) Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 149(1):1–5PubMedPubMedCentralGoogle Scholar
  132. Ratkowsky DA, Olley J, Ross T (2005) Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins. J Theor Biol 233(3):351–362PubMedGoogle Scholar
  133. Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci 74(6):2589–2593PubMedGoogle Scholar
  134. Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61(2):214–221PubMedGoogle Scholar
  135. Risebrough RW, Walker W, Schmidt TT, De Lappe BW, Connors CW (1976) Transfer of chlorinated biphenyls to AntarcticaGoogle Scholar
  136. Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66(8):3230–3233PubMedPubMedCentralGoogle Scholar
  137. Rodrigues DF, Tiedje JM (2008) Coping with our cold planet. Appl Environ Microbiol 74(6):1677–1686PubMedPubMedCentralGoogle Scholar
  138. Roohi R, Kuddus M, Saima S (2013) Cold-active detergent-stable extracellular α-amylase from Bacillus cereus GA6&58; biochemical characteristics and its perspectives in laundry detergent formulation. J Biochem Technol 4(4):636–644Google Scholar
  139. Saito R, Nakayama A (2004) Differences in malate dehydrogenases from the obligately piezophilic deep-sea bacterium Moritella sp. strain 2D2 and the psychrophilic bacterium Moritella sp. strain 57101. FEMS Microbiol Lett 233(1):165–172PubMedGoogle Scholar
  140. Sally OY, Brown A, Middleton AJ, Tomczak MM, Walker VK, Davies PL (2010) Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis. Cryobiology 61(3):327–334Google Scholar
  141. Sharma S, Khan FG, Qazi GN (2010) Molecular cloning and characterization of amylase from soil metagenomic library derived from Northwestern Himalayas. Appl Microbiol Biotechnol 86(6):1821–1828PubMedGoogle Scholar
  142. Siddiqui KS (2017) Defying the activity–stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability. Crit Rev Biotechnol 37(3):309–322PubMedGoogle Scholar
  143. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433PubMedGoogle Scholar
  144. Simonich SL, Hites RA (1995) Global distribution of persistent organochlorine compounds. Science 269(5232):1851PubMedGoogle Scholar
  145. Sindhu R, Binod P, Madhavan A, Beevi US, Mathew AK, Abraham A, Kumar V (2017) Molecular improvements in microbial α-amylases for enhanced stability and catalytic efficiency. Bioresour TechnolGoogle Scholar
  146. Soares FL, Melo IS, Dias ACF, Andreote FD (2012) Cellulolytic bacteria from soils in harsh environments. World J Microbiol Biotechnol 28(5):2195–2203PubMedGoogle Scholar
  147. Sun X, Griffith M, Pasternak JJ, Glick BR (1995) Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 41(9):776–784PubMedGoogle Scholar
  148. Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE, Maloney SK (2012) Coping with thermal challenges: physiological adaptations to environmental temperatures. Compr PhysiolGoogle Scholar
  149. TePoele S, Van der Graaf J (2005) Enzymatic cleaning in ultrafiltration of wastewater treatment plant effluent. Desalination 179(1):73–81Google Scholar
  150. Truongvan N, Jang SH, Lee C (2016) Flexibility and stability trade-off in active site of cold-adapted Pseudomonas mandelii Esterase EstK. Biochemistry 55(25):3542–3549PubMedGoogle Scholar
  151. Tuyen H, Helmke E, Schweder T (2001) Cloning of two pectate lyase genes from the marine Antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes. Extremophiles 5(1):35–44PubMedGoogle Scholar
  152. Ueda M, Goto T, Nakazawa M, Miyatake K, Sakaguchi M, Inouye K (2010) A novel cold-adapted cellulase complex from Eisenia foetida: characterization of a multienzyme complex with carboxymethylcellulase, β-glucosidase, β-1, 3 glucanase, and β-xylosidase. Comp Biochem Physiol B Biochem Mol Biol 157(1):26–32PubMedGoogle Scholar
  153. Vajpai N, Nisius L, Wiktor M, Grzesiek S (2013) High-pressure NMR reveals close similarity between cold and alcohol protein denaturation in ubiquitin. Proc Natl Acad Sci 110(5):E368–E376PubMedGoogle Scholar
  154. Van Petegem F, Collins T, Meuwis MA, Gerday C, Feller G, Van Beeumen J (2003) The structure of a cold-adapted family 8 xylanase at 1.3 å resolution structural adaptations to cold and investigation of the active site. J Biol Chem 278(9):7531–7539PubMedGoogle Scholar
  155. Vester JK, Glaring MA, Stougaard P (2015) An exceptionally cold-adapted alpha-amylase from a metagenomic library of a cold and alkaline environment. Appl Microbiol Biotechnol 99(2):717–727PubMedGoogle Scholar
  156. Violot S, Aghajari N, Czjzek M, Feller G, Sonan GK, Gouet P, … Receveur-Brechot V (2005) Structure of a full length psychrophilic cellulase from Pseudoalteromonas ha0loplanktis revealed by X-ray diffraction and small angle X-ray scattering. Journal of molecular biology 348(5):1211–1224PubMedGoogle Scholar
  157. Wang Q, Hou Y, Ding Y, Yan P (2012) Purification and biochemical characterization of a cold-active lipase from Antarctic sea ice bacteria Pseudoalteromonas sp. NJ 70 Mol Biol Rep 39(9):9233–9238PubMedGoogle Scholar
  158. Wang YB, Gao C, Zheng Z, Liu FM, Zang JY, Miao JL (2015) Immobilization of cold-active cellulase from antarctic bacterium and its use for kelp cellulose ethanol fermentation. BioResources 10(1):1757–1772Google Scholar
  159. Wi AR, Jeon SJ, Kim S, Park HJ, Kim D, Han SJ, … Kim HW (2014) Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus. Biotechnol Lett 36(6):1295–1302PubMedGoogle Scholar
  160. Wiebe WJ, Sheldon WM, Pomeroy LR (1992) Bacterial growth in the cold: evidence for an enhanced substrate requirement. Appl Environ Microbiol 58(1):359–364PubMedPubMedCentralGoogle Scholar
  161. Wolfenden R (2011) Benchmark reaction rates, the stability of biological molecules in water, and the evolution of catalytic power in enzymes. Annu Rev Biochem 80:645–667PubMedGoogle Scholar
  162. Wolfenden R, Snider MJ (2001) The depth of chemical time and the power of enzymes as catalysts. Accounts Chem Res 34(12):938–945Google Scholar
  163. Xiao N, Suzuki K, Nishimiya Y, Kondo H, Miura A, Tsuda S, Hoshino T (2010) Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS J 277(2):394–403PubMedGoogle Scholar
  164. Xu H, Griffith M, Patten CL, Glick BR (1998) Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 44(1):64–73Google Scholar
  165. Xu Y, Nogi Y, Kato C, Liang Z, Rüger HJ, De Kegel D, Glansdorff N (2003) Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol 53(2):533–538PubMedGoogle Scholar
  166. Xuezheng L, Shuoshuo C, Guoying X, Shuai W, Ning D, Jihong S (2010) Cloning and heterologous expression of two cold-active lipases from the Antarctic bacterium Psychrobacter sp. G Polar Res 29(3):421–429Google Scholar
  167. Yang J, Dang H (2011) Cloning and characterization of a novel cold-active endoglucanase establishing a new subfamily of glycosyl hydrolase family 5 from a psychrophilic deep-sea bacterium. FEMS Microbiol Lett 325(1):71–76PubMedGoogle Scholar
  168. Yau S, Lauro FM, DeMaere MZ, Brown MV, Thomas T, Raftery MJ, Cavicchioli R (2011) Virophage control of antarctic algal host–virus dynamics. Proc Natl Acad Sci 108(15):6163–6168PubMedGoogle Scholar
  169. Yeh CM, Kao BY, Peng HJ (2009) Production of a recombinant type 1 antifreeze protein analogue by L. lactis and its applications on frozen meat and frozen dough. J Agric Food Chem 57(14):6216–6223PubMedGoogle Scholar
  170. Yun QI, Lin ZHAO, Ojekunle ZO, Xin TAN (2007) Isolation and preliminary characterization of a 3-chlorobenzoate degrading bacteria. J Environm Sci 19(3):332–337Google Scholar
  171. Zhang N, Suen WC, Windsor W, Xiao L, Madison V, Zaks A (2003) Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution. Protein Eng 16(8):599–605PubMedGoogle Scholar
  172. Zhang L, Wang Y, Liang J, Song Q, Zhang XH (2016) Degradation properties of various macromolecules of cultivable psychrophilic bacteria from the deep-sea water of the South Pacific Gyre. Extremophiles 20(5):663–671PubMedGoogle Scholar
  173. Zhao GY, Zhou MY, Zhao HL, Chen XL, Xie BB, Zhang XY, … Zhang YZ (2012) Tenderization effect of cold-adapted collagenolytic protease MCP-01 on beef meat at low temperature and its mechanism. Food Chem 134(4):1738–1744PubMedGoogle Scholar
  174. Zheng G, Selvam A, Wong JW (2011) Rapid degradation of lindane (γ-hexachlorocyclohexane) at low temperature by Sphingobiumstrains. Int Biodeterior Biodegrad 65(4):612–618Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Soil Microbial Ecology and Environmental Toxicology Laboratory, Zoology DepartmentUniversity of DelhiNew DelhiIndia
  2. 2.National Agriculture Science Fund (NASF)New DelhiIndia

Personalised recommendations