Advertisement

Congo Red affects the growth, morphology and activity of glucosamine-6-phosphate synthase in the human pathogenic fungus Sporothrix schenckii

  • Juan Francisco Sánchez-López
  • Joaquín González-Ibarra
  • Juan Ignacio Macías-Segoviano
  • Mayra Cuéllar-Cruz
  • Aurelio Álvarez-Vargas
  • Carmen Cano-Canchola
  • Everardo López-Romero
Short Communication
  • 61 Downloads

Abstract

Sporothrix schenckii is the etiological agent of sporotrichosis, a mycosis of humans and other mammals. Little is known about the responses of this thermodimorphic pathogen to perturbations in the cell wall (CW) by different stress conditions. Here we describe the effect of Congo Red (CR) on the fungal growth, morphogenesis and activity of glucosamine-6-phosphate (GlcN-6-P) synthase. Under conditions of yeast development, 15 µM CR abolished conidia (CN) germination, but when yeast cells were first obtained in the absence of the dye and then post-incubated in its presence, yeasts rapidly differentiated into mycelial cells. On the other hand, under conditions of mycelium development, 150 µM CR did not affect CN germination, but filamentous cells underwent structural changes characterized by a distorted CW contour, the loss of polarity and the formation of red-pigmented, hyphal globose structures. Under these conditions, CR also induced a significant and transient increase in the activity of GlcN-6-P synthase, an essential enzyme in CW biogenesis.

Keywords

Sporothrix schenckii Congo Red Fungal responses 

Notes

Acknowledgements

The authors thank Dr. Julio C. Villagómez-Castro for helpful discussion of results and Q.F.B. Lilia M. Almanza-Villegas for expert technical support. Sponsorship: Consejo Nacional de Ciencia y Tecnología (Grant No. 2002-C01-39528/A-1) and Dirección de Apoyo a la Investigación y al Posgrado (DAIP), Universidad de Guanajuato, México.

Supplementary material

203_2018_1576_MOESM1_ESM.docx (11 kb)
Supplementary material 1 (DOCX 11 KB)
203_2018_1576_MOESM2_ESM.pptx (2.8 mb)
Supplementary material 2 (PPTX 2907 KB)

References

  1. Aquino PE, Rodríguez-del-Valle N (2002) Characterization of a protein kinase C gene in Sporothrix schenckii and its expression during the yeast-to-mycelium transition. Med Mycol 40:185–199CrossRefGoogle Scholar
  2. Arellano M, Valdivieso MH, Calonge TM, Coll PM, Duran A, Pérez P (1999) Schizosaccharomyces pombe protein kinase C homologues, pck1p and pck2p are targets of rho1p and rho2p and differentially regulate cell integrity. J Cell Sci 112:3569–3578PubMedGoogle Scholar
  3. Bartnicki-García S, Nickerson WJ (1962) Induction of yeast-like development in Mucor rouxii by carbon dioxide. J Bacteriol 84:829–840PubMedPubMedCentralGoogle Scholar
  4. Bartnicki-García S, Persson J, Chanzy H (1994) An electron microscope and electron diffraction study of the effect of Calcofluor and Congo Red on the biosynthesis of chitin in vitro. Arch Biochem Biophys 310:6–15CrossRefGoogle Scholar
  5. Bermejo C, García R, Rodríguez-Peña J, Nombela C, Heinisch JJ, Arroyo J (2010) Characterization of sensor-specific stress response by transcriptional profiling of wsc1 and mid2 deletion strains and chimeric sensors in Saccharomyces cerevisiae. OMICS 14:679–688CrossRefGoogle Scholar
  6. Calonge TM, Nakano K, Arellano M, Arai R, Katayama S, Toda T, Mabuchi I, Pérez P (2000) Schizosaccharomyces pombe rho2p GTPase regulates cell wall alpha-glucan biosynthesis through the protein kinase pck2p. Mol Biol Cell 11:4393–4401CrossRefGoogle Scholar
  7. Fevre M, Girard V, Nodet P (1990) Biochemistry of cell walls and membranes in fungi. Springer, BerlinGoogle Scholar
  8. García R, Bermejo C, Grau C, Pérez R, Rodríguez-Peña JM, Francois J, Nombela C, Arroyo J (2004) The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J Biol Chem 279:15183–15195CrossRefGoogle Scholar
  9. González-Ibarra J, Milewski S, Villagómez-Castro JC, Cano-Canchola C, López-Romero E (2010) Sporothrix schenckii: purification and partial biochemical characterization of glucosamine-6-phosphate synthase, a potential antifungal target. Med Mycol 48:110–121CrossRefGoogle Scholar
  10. Heinisch JJ, Lorberg A, Schmitz HP, Jacoby JJ (1999) The protein kinase C-mediated MAP kinase pathway is involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol 32:671–680CrossRefGoogle Scholar
  11. Ichinomiya M, Uchida H, Koshi Y, Ohta A, Horiuchi H (2007) A protein kinase C-encoding gene, pkcA, is essential to the viability of the filamentous fungus Aspergillus nidulans. Biosc Biotechnol Biochem 71:2787–2799CrossRefGoogle Scholar
  12. Kapteyn JC, Ram AF, Groos EM, Kollar R, Montijn RC, Van den Ende H, Llobell A, Cabib E, Klis FM (1997) Altered extent of cross-linking of beta-1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall beta-1,3-glucan content. J Bacteriol 179:6279–6284CrossRefGoogle Scholar
  13. Katayama S, Hirata D, Arellano M, Pérez P, Toda T (1999) Fission yeast alpha-glucan synthase Mok1 requires the actin cytoskeleton to localize the sites of growth and plays an essential role in cell morphogenesis downstream of protein kinase C function. J Cell Biol 144:1173–1186CrossRefGoogle Scholar
  14. Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256CrossRefGoogle Scholar
  15. Kopecká M, Gabriel M (1992) The influence of congo red on the cell wall and (1,3)-beta-D-glucan microfibril biogenesis in Saccharomyces cerevisiae. Arch Microbiol 158:115–126CrossRefGoogle Scholar
  16. Lagorce A, Le Berre AV, Aguilar UB, Martin YH, Dagkessamanskaia A, François J (2002) Involvement of GFA1, which encodes glutamine-fructose-6-phosphate amidotransferase, in the activation of the chitin synthesis pathway in response to cell-wall defects in Saccharomyces cerevisiae. Eur J Biochem 269:1697–1707CrossRefGoogle Scholar
  17. Lagorce A, Hauser NC, Labourdette D, Rodríguez C, Martin-Yken H, Arroyo J, Hoheisel JD, Francois J (2003) Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem 278:20345–20357CrossRefGoogle Scholar
  18. Levin DE, Jung US (1999) Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol Microbiol 34:1049–1057CrossRefGoogle Scholar
  19. Lopes-Bezerra LM, Walker LA, Niño-Vega G, Mora-Montes HM, Neves GWP, Villalobos-Duno H, Barreto L, García K, Franco B, Martínez-Alvarez JA, Munro CA, Gow NAR (2018) Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exibit bilaminate structures and sloughing of extensive and intact layers. PLoS Negl Trop Dis.  https://doi.org/10.1371/journal.pntd.0006169 CrossRefPubMedPubMedCentralGoogle Scholar
  20. López-Romero E, Reyes-Montes MR, Pérez-Torres A, Ruiz-Baca E, Villagómez-Castro JC, Mora-Montes HM, Flores-Carreón A, Toriello C (2011) Sporothrix schenckii complex and sporotrichosis, an emerging health problem. Future Microbiol 6:85–102CrossRefGoogle Scholar
  21. Maia JCC (1994) Hexosamine and cell wall biogenesis in the aquatic fungus Blastocladiella emersonii. FASEB J 8:848–853CrossRefGoogle Scholar
  22. Mendoza M, Alvarado P, Díaz E (2005) Comportamiento fisiológico y de sensibilidad in-vitro de aislamientos de Sporothrix schenckii mantenidos 18 años por dos métodos de preservación. Rev Iberoam Micol 22:151–156CrossRefGoogle Scholar
  23. Milewski S (2002) Glucosamine-6-phosphate synthase: the multifacets enzyme. Biochim Biophys Acta 1597:173–192CrossRefGoogle Scholar
  24. Milewski S, Kuszczak D, Jedrzejczak R, Smith RJ, Brown AJP, Gooday GW (1999) Oligomeric structure and regulation of Candida albicans glucosamine-6-phosphate synthase. J Biol Chem 274:4000–4008CrossRefGoogle Scholar
  25. Molina M, Gil C, Pla J, Arroyo J, Nombela C (2000) Protein localization approaches for understanding yeast cell wall biogenesis. Micr Res Tech 51:601–612CrossRefGoogle Scholar
  26. Nodet P, Capellano A, Fevre M (1990a) Congo Red inhibits in vitro β-glucan synthases of Saprolegnia sp. FEMS Microbiol Lett 69:225–228Google Scholar
  27. Nodet P, Girard V, Fevre M (1990b) Morphogenetic effects of Congo Red on hyphal growth and cell wall development of the fungus Saprolegnia monoica. J Gen Microbiol 136:303–310CrossRefGoogle Scholar
  28. Orlean P (1997) The molecular and cellular biology of the yeast Saccharomyces cerevisiae. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  29. Popolo L, Gualtieri T, Ragni E (2001) The yeast cell-wall salvage pathway. Med Mycol 39:111–121CrossRefGoogle Scholar
  30. Ram AFJ, Arentshorst M, Damveld RA, VanKuyk PA, Klis FM, Van-den Hondel CAMJJ (2004) The cell wall stress response in Aspergillus niger involves increased expression of the glutamine:fructose-6-phosphate amidotransferase-encoding gene (gfaA) and increased deposition of chitin in the cell wall. Microbiol 150:3315–3326CrossRefGoogle Scholar
  31. Resto S, Rodríguez-del-Valle N (1998) Yeast cell cycle of Sporothrix schenckii. J Med Vet Mycol 26:13–24CrossRefGoogle Scholar
  32. Rodríguez-del-Valle N, Rosario M, Torres-Blasini G (1993) Effects of pH, aeration and carbon source on the development of the mycelial or yeast forms of Sporothrix schenckii from conidia. Mycopathologia 82:83–88CrossRefGoogle Scholar
  33. Roncero C, Duran A (1985) Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. J Bacteriol 163:1180–1185PubMedPubMedCentralGoogle Scholar
  34. Sánchez-López JF, González-Ibarra J, Álvarez-Vargas A, Milewski S, Villagómez-Castro JC, Cano-Canchola C, López-Romero E (2015) Isolation of the GFA1 gene encoding glucosamine-6-phosphate synthase of Sporothrix schenckii and its expression in Saccharomyces cerevisiae. Prot Exp Purif 110:57–64CrossRefGoogle Scholar
  35. Selitrennikoff CP (1984) Calcofluor white inhibits Neurospora sp. chitin synthetase activity. Exp Mycol 8:269–272CrossRefGoogle Scholar
  36. Smits GJ, Kapteyn JC, Van-den-Ende H, Klis FM (1999) Cell wall dynamics in yeast. Curr Opin Microbiol 2:348–352CrossRefGoogle Scholar
  37. Travassos LR, Lloyd KO (1980) Sporothrix schenckii and related species of Ceratocystis spp. Microbiol Rev 1:683–721Google Scholar
  38. Valdivia RH, Schekman R (2003) The yeast Rho1p and Pkc1p regulate the transport of chitin synthase III (Chs3p) from internal stores to the plasma membrane. Proc Nat Acad Sci USA 100:10287–10292CrossRefGoogle Scholar
  39. Vannini GL, Poli F, Donini A, Pancaldi S (1983) Effects of Congo Red on wall synthesis and morphogenesis in Saccharomyces cerevisiae. Plant Sci Lett 31:9–17CrossRefGoogle Scholar
  40. Vannini GL, Pancaldi S, Poli F, Dall´Olio G (1987) Exocytosis in Saccharomyces cerevisiae treated with Congo Red. Cytobios 49:89–97PubMedGoogle Scholar
  41. Vermeulen CA, Wessels JGH (1986) Chitin biosynthesis by a fungal membrane preparation: evidence for a transient non-crystalline state of chitin. Eur J Biochem 158:411–415CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Juan Francisco Sánchez-López
    • 2
  • Joaquín González-Ibarra
    • 3
  • Juan Ignacio Macías-Segoviano
    • 1
  • Mayra Cuéllar-Cruz
    • 1
  • Aurelio Álvarez-Vargas
    • 1
  • Carmen Cano-Canchola
    • 1
  • Everardo López-Romero
    • 1
  1. 1.División de Ciencias Naturales y Exactas, Departamento de BiologíaUniversidad de GuanajuatoGuanajuatoMexico
  2. 2.Departamento de Formación Integral e InstitucionalUnidad Profesional Interdisciplinaria de Ingeniería, Campus Guanajuato del Instituto Politécnico Nacional (UPIIG-IPN)Silao de la VictoriaMexico
  3. 3.Coordinación de Vigilancia EpidemiológicaInstituto Mexicano del Seguro SocialMexicoMexico

Personalised recommendations