Advertisement

Archives of Microbiology

, Volume 201, Issue 1, pp 87–92 | Cite as

Modeling of concentric pattern of Serratia marcescens colony

  • Jaroslav Čepl
  • Vladimír ScholtzEmail author
  • Jiřina Scholtzová
Original Paper
  • 120 Downloads

Abstract

Serratia marcescens forms different colony patterns under distinct conditions. One of them is the concentric fountain-shaped pattern with pigmented center followed by unpigmented ring and pigmented rim. In this work, we study this pattern formation by construction of the mathematical model able to display this pattern based on putative metabolical traits, supported by series of experiments and by references. A pattern formation of such colony type depends on the disposition of glucose and amino acids, and is accompanied by a pH change in the agar medium. In this paper, we confirm that a metabolic activity of growing colony alters its environment which subsequently changes the colony formation. Presented model corresponds well with the real colony behaviour.

Keywords

Reaction–diffusion model Glucose Amino-acid pH change 

References

  1. Aguilar C, Vlamakis H, Losick R, Kolter R (2007) Thinking about Bacillus subtilis as a multicellular organism. Curr Opin Microbiol 10(6):638–643CrossRefGoogle Scholar
  2. Ben-Jacob E, Schochet O, Tenenbaum A, Cohen I, Czirok A, Vicsek T (1994) Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368(6466):46CrossRefGoogle Scholar
  3. Bernier SP, Létoffé S, Delepierre M, Ghigo J-M (2011) Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria. Mol Microbiol 81(3):705–716CrossRefGoogle Scholar
  4. Čepl JJ, Pátková I, Blahŭšková A, Cvrčková F, Markoš A (2010) Patterning of mutually interacting bacterial bodies: close contacts and airborne signals. BMC Microbiol 10(1):139CrossRefGoogle Scholar
  5. Čepl J, Blahŭšková A, Cvrčková F, Markoš A (2014) Ammonia produced by bacterial colonies promotes growth of ampicillin-sensitive Serratia sp. by means of antibiotic inactivation. FEMS Microbiol Lett 354(2):126–132CrossRefGoogle Scholar
  6. Čepl J, Scholtz V, Scholtzová J (2016) The fitness change and the diversity maintenance in the growing mixed colony of two Serratia rubidaea clones. Arch Microbiol 198(3):301–306CrossRefGoogle Scholar
  7. Golding I, Cohen I, Ben-Jacob E (1998) Spatio-selection in expanding bacterial colonies. arXiv:cond-mat/9811208
  8. Grimont F, Grimont PA (2006) The genus Serratia. The prokaryotes. Springer, New York, pp 219–244CrossRefGoogle Scholar
  9. Hallatschek O, Hersen P, Ramanathan S, Nelson DR (2007) Genetic drift at expanding frontiers promotes gene segregation. Proc Natl Acad Sci 104(50):19926–19930CrossRefGoogle Scholar
  10. Heal R, Parsons A (2002) Novel intercellular communication system in Escherichia coli that confers antibiotic resistance between physically separated populations. J Appl Microbiol 92(6):1116–1122CrossRefGoogle Scholar
  11. Kuthan M, Devaux F, Janderová B, Slaninová I, Jacq C, Palková Z (2003) Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol Microbiol 47(3):745–754CrossRefGoogle Scholar
  12. Létoffé S, Audrain B, Bernier SP, Delepierre M, Ghigo J-M (2014) Aerial exposure to the bacterial volatile compound trimethylamine modifies antibiotic resistance of physically separated bacteria by raising culture medium ph. MBio 5(1):e00944–13CrossRefGoogle Scholar
  13. Markoš A, Das P (2016) Levels or domains of life? Biosemiotics 9(3):319–330CrossRefGoogle Scholar
  14. Miller M, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199CrossRefGoogle Scholar
  15. Nijland R, Burgess JG (2010) Bacterial olfaction. Biotechnol J 5(9):974–977CrossRefGoogle Scholar
  16. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54(1):49–79CrossRefGoogle Scholar
  17. Palková Z, Janderová B, Gabriel J, Zikánová B, Pospíŝek M, Forstová J (1997) Ammonia mediates communication between yeast colonies. Nature 390(6659):532–536CrossRefGoogle Scholar
  18. Pátková I, Čepl JJ, Rieger T, Blahŭšková A, Neubauer Z, Markoš A (2012) Developmental plasticity of bacterial colonies and consortia in germ-free and gnotobiotic settings. BMC Microbiol 12(1):178CrossRefGoogle Scholar
  19. Pipe LZ, Grimson MJ (2008) Spatial-temporal modelling of bacterial colony growth on solid media. Mol Biosyst 4(3):192–198CrossRefGoogle Scholar
  20. Ratzke C, Gore J (2017) Modifying and reacting to the environmental pH drives bacterial interactions. bioRxiv.  https://doi.org/10.1101/136838 CrossRefGoogle Scholar
  21. Rieger T, Neubauer Z, Blahuskova A, Cvrčková F, Markos A (2008) Bacterial body plans: colony ontogeny in Serratia marcescens. Commun Integr Biol 1(1):78–87CrossRefGoogle Scholar
  22. Shapiro JA (1988) Bacteria as multicellular organisms. Sci Am 258(6):82–89CrossRefGoogle Scholar
  23. Shapiro JA, Dworkin M (1997) Bacteria as multicellular organisms. Oxford University Press, OxfordGoogle Scholar
  24. Solé M, Rius N, Francia A, Loren J (1994) The effect of pH on prodigiosin production by non-proliferating cells of Serratia marcescens. Lett Appl Microbiol 19(5):341–344CrossRefGoogle Scholar
  25. Sole M, Francia A, Rius N, Loren J (1997) The role of pH in the ‘glucose effect’ on prodigiosin production by non-proliferating cells of Serratia marcescens. Lett Appl Microbiol 25(2):81–84CrossRefGoogle Scholar
  26. Solé M, Rius N, Lorén JG (2010) Rapid extracellular acidification induced by glucose metabolism in non-proliferating cells of Serratia marcescens. Int Microbiol 3(1):39–43Google Scholar
  27. Sovová K, Čepl J, Markoš A, Španěl P (2013) Real time monitoring of population dynamics in concurrent bacterial growth using SIFT-MS quantification of volatile metabolites. Analyst 138(17):4795–4801CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jaroslav Čepl
    • 1
  • Vladimír Scholtz
    • 2
    Email author
  • Jiřina Scholtzová
    • 3
  1. 1.Department of Genetics and the Physiology of Forest Trees, Faculty of Forestry and Wood SciencesCzech University of Live SciencesPragueCzech Republic
  2. 2.Department of Physics and MeasurementsUniversity of Chemistry and TechnologyPragueCzech Republic
  3. 3.Department of Theoretical Computer Science, Faculty of Information TechnologyCzech Technical University in PraguePragueCzech Republic

Personalised recommendations