Advertisement

Archives of Microbiology

, Volume 201, Issue 1, pp 81–86 | Cite as

Flavobacterium dasani sp. nov., a psychrotolerant bacterium isolated from Arctic soil

  • Dhiraj Kumar Chaudhary
  • Dockyu Kim
  • Jaisoo KimEmail author
Original Paper
  • 101 Downloads

Abstract

A novel yellow-colored, Gram-stain-negative, aerobic, non-motile, catalase- and oxidase-positive, and rod-shaped psychrotolerant bacterium, designated strain PLR-18-3T, was isolated from Arctic soil and was subjected to polyphasic taxonomic study. Cells were able to grow at 0–30 °C, pH 6.0–10.5, and 0–3.0% (w/v) NaCl concentration. Based on the 16S rRNA gene sequence analysis, this Arctic strain belonged to the genus Flavobacterium, with the closest neighbor being Flavobacterium noncentrifugens R-HLS-17T (96.2% sequence similarity). The strain contained MK-6 as a sole respiratory quinone, phosphatidylethanolamine as the major polar lipid, and summed feature 3 (C16:1ω7c and/or C16:1ω6c), iso-C15:0, iso-C15:0 G, iso-C17:0 3-OH, iso-C15:0 3-OH, anteiso-C15:0, and summed feature 9 (iso-C17:1ω9c and/or C16:010-methyl) as the predominant fatty acids. The DNA G + C content was 37.9 mol%. On the basis of polyphasic data, strain PLR-18-3T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium dasani sp. nov. is proposed. The type strain is PLR-18-3T (=KEMB 9005-713T=KACC 19627T=NBRC 113347T).

Keywords

Flavobacterium dasani sp. nov. Flavobacteriaceae Bacteroidetes Psychrotolerant Arctic soil 

Abbreviations

KEMB

Korea Environmental Microorganisms Bank

KACC

Korean Agricultural Culture Collection

CCUG

Culture Collection University of Gothenburg

NBRC

NITE Biological Resource Center

LPSN

List of Prokaryotic names with Standing in Nomenclature

Notes

Acknowledgements

We greatly appreciate Professor Bernhard Schink (University of Konstanz, Konstanz, Germany) for providing the species name.

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A1A09916982).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical statement

This study does not describe any experimental work related to human.

Supplementary material

203_2018_1574_MOESM1_ESM.docx (200 kb)
Supplementary material 1 (DOCX 199 KB)

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM. Genus II (1923) Flavobacterium gen. nov. In: Bergey’s manual of determinative bacteriology. Williams & Wilkins, Baltimore, pp 97–117Google Scholar
  2. Bernardet JF, Bowman JP (2010) The genus Flavobacterium. In: Whitman WB, Parte AC (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 4. Springer, New York, pp 112–155Google Scholar
  3. Bernardet JF, Segers P, Vancanneyt M, Berthe F, Kersters K, Vandamme P (1996) Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Evol Microbiol 46:128–148Google Scholar
  4. Breznak JA, Costilow RN (2007) Physicochemical factors in growth. In: Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Methods for general and molecular bacteriology, 3rd edn. American Society for Microbiology, Washington D. C., pp 309–329Google Scholar
  5. Chaudhary DK, Kim J (2016) Novosphingobium naphthae sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 66:3170–3176CrossRefGoogle Scholar
  6. Chaudhary DK, Kim J (2017) Flavobacterium olei sp. nov., a novel psychrotolerant bacterium isolated from oil-contaminated soil. Int J Syst Evol Microbiol 67:2211–2218CrossRefGoogle Scholar
  7. Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45:316–354PubMedPubMedCentralGoogle Scholar
  8. Doetsch RN (1981) Determinative methods of light microscopy. In: Gerhardt P (ed) Manual of methods for general bacteriology. American Society for Microbiology, Washington D. C, pp 21–33Google Scholar
  9. Dong K, Liu H, Zhang J, Zhou Y, Xin Y (2012) Flavobacterium xueshanense sp. nov. and Flavobacterium urumqiense sp. nov., two psychrophilic bacteria isolated from glacier ice. Int J Syst Evol Microbiol 62:1151–1157CrossRefGoogle Scholar
  10. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  12. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  13. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA gene. Appl Environ Microbiol 74:2461–2470CrossRefGoogle Scholar
  14. Gonzalez JM, Saiz-Jimenez C (2002) A fluorimetric method for the estimation of G + C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773CrossRefGoogle Scholar
  15. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  16. Hemraj V, Diksha S, Avneet G (2013) A review on commonly used biochemical test for bacteria. Innovare J Life Sci 1:1–7Google Scholar
  17. Huang F, Zhang Y, Zhu Y, Wang P, Lu J, Lv J (2014) Flavobacterium qiangtangensis sp. nov., isolated from Qiangtang Basin in Qinghai-Tibetan Plateau, China. Curr Microbiol 69:234–239CrossRefGoogle Scholar
  18. Kacagan M, Inan K, Belduz AO, Canakci S (2013) Flavobacterium anatoliense sp. nov., isolated from fresh water, and emended description of Flavobacterium ceti. Int J Syst Evol Microbiol 63:2075–2081CrossRefGoogle Scholar
  19. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  20. Komagata K, Suzuki K (1987) Lipids and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–203CrossRefGoogle Scholar
  21. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  22. Liu H, Lu P, Zhu G (2017) Flavobacterium cloacae sp. nov., isolated from waste water. Int J Syst Evol Microbiol 67:659–663CrossRefGoogle Scholar
  23. Margesin R, Feller G (2010) Biotechnological application of psychrophiles. Environ Technol 31:835–844CrossRefGoogle Scholar
  24. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  25. Reichenbach H (1992) The order Cytophagales. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn, vol 4. Springer, New York, pp 3631–3675CrossRefGoogle Scholar
  26. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  27. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI technical note 101. MIDI Inc, NewarkGoogle Scholar
  28. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849CrossRefGoogle Scholar
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  30. Yi H, Oh HM, Lee JH, Kim SJ, Chun J (2005) Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the Antarctic. Int J Syst Evol Microbiol 55:637–641CrossRefGoogle Scholar
  31. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefGoogle Scholar
  32. Zamora L, Fernández-Garayzábal JF, Svensson-Stadler LA, Palacios MA, Domínguez L, Moore ERB, Vela AI (2012) Flavobacterium oncorhynchi sp. nov., a new species isolated from rainbow trout (Oncorhynchus mykiss). Syst Appl Microbiol 35:86–91CrossRefGoogle Scholar
  33. Zhu L, Liu Q, Liu H, Zhang J, Dong X, Zhou Y, Xin Y (2013) Flavobacterium noncentrifugens sp. nov., a psychrotolerant bacterium isolated from glacier meltwater. Int J Syst Evol Microbiol 67:2211–2218Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dhiraj Kumar Chaudhary
    • 1
  • Dockyu Kim
    • 2
  • Jaisoo Kim
    • 1
    Email author
  1. 1.Department of Life Science, College of Natural SciencesKyonggi UniversitySuwonSouth Korea
  2. 2.Division of Polar Life SciencesPolar Research InstituteInchonSouth Korea

Personalised recommendations