Smoking and the intestinal microbiome

  • Ziv Savin
  • Shaye Kivity
  • Hagith Yonath
  • Shoenfeld Yehuda
Mini-Review

Abstract

Studies are emerging alluding to the role of intestinal microbiome in the pathogenesis of diseases. Intestinal microbiome is susceptible to the influence of environmental factors such as smoking, and recent studies have indicated microbiome alterations in smokers. The aim of the study was to review the literature regarding the impact of smoking on the intestinal microbiome. A literature review of publications in PUBMED was performed using combinations of the terms “Intestinal/Gut/Gastrointestinal/Colonic” with “Microbiome/Microbiota/Microbial/Flora” and “Smoking/Smoker/Tobacco”. We selected studies that were published between the years 2000 and 2016 as our inclusion criteria. Observational and interventional studies suggest that the composition of intestinal microbiome is altered due to smoking. In these studies, Proteobacteria and Bacteroidetes phyla were increased, as well as the genera of Clostridium, Bacteroides and Prevotella. On the other hand, Actinobacteria and Firmicutes phyla as well as the genera Bifidobacteria and Lactococcus were decreased. Smoking also decreased the diversity of the intestinal microbiome. Mechanisms that have been suggested to explain the effect of smoking on intestinal microbiome include: oxidative stress enhancement, alterations of intestinal tight junctions and intestinal mucin composition, and changes in acid–base balance. Interestingly, some smoking-induced alterations of intestinal microbiome resemble those demonstrated in conditions such as inflammatory bowel disease and obesity. Further studies should be performed to investigate this connection. Smoking has an effect on intestinal microbiome and is suggested to alter its composition. This interaction may contribute to the development of intestinal and systemic diseases, particularly inflammatory bowel diseases.

Keywords

Smoking Intestinal microbiome Dysbiosis Autoimmunity Inflammatory bowel disease 

Notes

Acknowledgements

We deeply thank Omri Koren, PhD, principal investigator in Bar-Ilan Faculty of Medicine, for his assistance and comments that greatly improved our manuscript.

References

  1. Allais L et al (2016) Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ Microbiol 18:1352–1363CrossRefPubMedGoogle Scholar
  2. Andoh A et al (2009) Faecal microbiota profile of Crohn’s disease determined by terminal restriction fragment length polymorphism analysis. Aliment Pharmacol Ther 29:75–82CrossRefPubMedGoogle Scholar
  3. Beaugerie L et al (2001) Impact of cessation of smoking on the course of ulcerative colitis. Am J Gastroenterol 96:2113–2116CrossRefPubMedGoogle Scholar
  4. Benjamin JL et al (2012) Smokers with active Crohn’s disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. Inflamm Bowel Dis 18:1092–1100CrossRefPubMedGoogle Scholar
  5. Bibiloni R, Mangold M, Madsen KL, Fedorak RN, Tannock GW (2006) The bacteriology of biopsies differs between newly diagnosed, untreated, Crohn’s disease and ulcerative colitis patients. J Med Microbiol 55:1141–1149CrossRefPubMedGoogle Scholar
  6. Biedermann L et al (2013) Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One 8:e59260CrossRefPubMedPubMedCentralGoogle Scholar
  7. Biedermann L et al (2014) Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH. Inflamm Bowel Dis 20:1496–1501CrossRefPubMedGoogle Scholar
  8. Bringiotti R et al (2014) Intestinal microbiota: The explosive mixture at the origin of inflammatory bowel disease? World J Gastrointest Pathophysiol 5:550–559CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brook I (2011) The impact of smoking on oral and nasopharyngeal bacterial flora. J Dent Res 90:704–710CrossRefPubMedGoogle Scholar
  10. Charlson ES et al (2010) Disordered microbial communities in the upper respiratory tract of cigarette smokers. PLoS One 5:e15216CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cosnes J, Carbonnel F, Beaugerie L, Le Quintrec Y, Gendre JP (1996) Effects of cigarette smoking on the long-term course of Crohn’s disease. Gastroenterology 110:424–431CrossRefPubMedGoogle Scholar
  12. Derkinderen P, Shannon KM, Brundin P (2014) Gut feelings about smoking and coffee in Parkinson’s disease. Mov Disord 29:976–979CrossRefPubMedPubMedCentralGoogle Scholar
  13. Di YP, Zhao J, Harper R (2012) Cigarette smoke induces MUC5AC protein expression through the activation of Sp1. J Biol Chem 287:27948–27958CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dupont HL (2016) Review article: The antimicrobial effects of rifaximin on the gut microbiota. Aliment Pharmacol Ther 43:3–10CrossRefPubMedGoogle Scholar
  15. Fava F, Danese S (2011) Intestinal microbiota in inflammatory bowel disease: friend of foe? World J Gastroenterol 17:557–566CrossRefPubMedPubMedCentralGoogle Scholar
  16. Foxman B, Rosenthal M (2013) Implications of the human microbiome project for epidemiology. Am J Epidemiol 177:197–201CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gevers D et al (2012) The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol 10:e1001377CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gophna U, Sommerfeld K, Gophna S, Doolittle WF, Veldhuyzen van Zanten, SJ (2006) O. Differences between tissue-associated intestinal microfloras of patients with Crohn’s disease and ulcerative colitis. J Clin Microbiol 44:4136–4141CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gough E, Shaikh H, Manges AR (2011) Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis 53:994–1002CrossRefPubMedGoogle Scholar
  20. Grivennikov SI (2013) Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol 35:229–244CrossRefPubMedGoogle Scholar
  21. Haberman Y et al (2014) Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature. J Clin Invest 124:3617–3633CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hébuterne X (2003) Gut changes attributed to ageing: effects on intestinal microflora. Curr Opin Clin Nutr Metab Care 6:49–54CrossRefPubMedGoogle Scholar
  23. Hopkins MJ, Sharp R, Macfarlane GT (2001) Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 48:198–205CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kim KC (2012) Role of epithelial mucins during airway infection. Pulm Pharmacol Ther 25:415–419CrossRefPubMedGoogle Scholar
  25. Kobayashi T, Fujiwara K (2013a) Identification of Heavy Smokers through Their Intestinal Microbiota by Data Mining Analysis. Biosci Microbiota Food Heal 32:77–80CrossRefGoogle Scholar
  26. Kobayashi T, Fujiwara K (2013b) Comparison of the accuracy and mechanism of data mining identification of the intestinal microbiota with 7 restriction enzymes. Biosci Microbiota Food Heal 32:139–148CrossRefGoogle Scholar
  27. Kriegel MA et al (2011) Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci USA 108:11548–11553CrossRefGoogle Scholar
  28. Kumar PS, Matthews CR, Joshi V, de Jager M, Aspiras M (2011) Tobacco smoking affects bacterial acquisition and colonization in oral biofilms. Infect Immun 79:4730–4738CrossRefPubMedPubMedCentralGoogle Scholar
  29. Landy J et al (2011) Review article: faecal transplantation therapy for gastrointestinal disease. Aliment Pharmacol Ther 34:409–415CrossRefPubMedGoogle Scholar
  30. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 108(Suppl):4615–4622Google Scholar
  31. Ley RE et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075CrossRefGoogle Scholar
  32. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023CrossRefPubMedGoogle Scholar
  33. Lim MY et al (2016) Analysis of the association between host genetics, smoking, and sputum microbiota in healthy humans. Sci Rep 6:23745CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mahid SS, Minor KS, Soto RE, Hornung CA, Galandiuk S (2006) Smoking and inflammatory bowel disease: a meta-analysis. Mayo Clin Proc 81:1462–1471CrossRefGoogle Scholar
  35. Marchesan JT et al (2013) Porphyromonas gingivalis oral infection exacerbates the development and severity of collagen-induced arthritis. Arthritis Res Ther 15:R186CrossRefPubMedPubMedCentralGoogle Scholar
  36. Maron R et al (2002) Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 106:1708–1715CrossRefPubMedGoogle Scholar
  37. Morgan XC et al (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13:R79CrossRefPubMedPubMedCentralGoogle Scholar
  38. Morris A et al (2013) Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med 187:1067–1075CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ott SJ et al (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53:685–693CrossRefPubMedPubMedCentralGoogle Scholar
  40. Qin J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65CrossRefPubMedPubMedCentralGoogle Scholar
  41. Raz I et al (2001) Beta-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial. Lancet 358:1749–1753CrossRefPubMedGoogle Scholar
  42. Rha Y-H et al (2002) Effect of microbial heat shock proteins on airway inflammation and hyperresponsiveness. J Immunol 169:5300–5307CrossRefPubMedGoogle Scholar
  43. Rogers MAM et al (2012) Higher rates of Clostridium difficile infection among smokers. PLoS One 7:e42091CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rosenstein ED, Weissmann G, Greenwald RA (2009) Porphyromonas gingivalis, periodontitis and rheumatoid arthritis. Med Hypotheses 73:457–458CrossRefPubMedGoogle Scholar
  45. Saba K, Denda-Nagai K, Irimura T (2009) A C-type lectin MGL1/CD301a plays an anti-inflammatory role in murine experimental colitis. Am J Pathol 174:144–152CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sapkota AR, Berger S, Vogel TM (2010) Human pathogens abundant in the bacterial metagenome of cigarettes. Environ Health Perspect 118:351–356CrossRefPubMedGoogle Scholar
  47. Schwiertz A et al (2010) Microbiota in pediatric inflammatory bowel disease. J Pediatr 157:240–244 e1CrossRefPubMedGoogle Scholar
  48. Sekirov I, Russell SL, Antunes LCM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904CrossRefPubMedGoogle Scholar
  49. Smith PM et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic treg cell homeostasis. Science (80-.) 341:569–573CrossRefGoogle Scholar
  50. Swidsinski A et al (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122:44–54CrossRefPubMedGoogle Scholar
  51. Talukder MAH et al (2011) Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. Am J Physiol Heart Circ Physiol 300:H388-96CrossRefPubMedGoogle Scholar
  52. Taneja V (2014) Arthritis susceptibility and the gut microbiome. FEBS Lett 588:4244–4249CrossRefPubMedPubMedCentralGoogle Scholar
  53. Tharappel JC et al (2010) Effects of cigarette smoke on the activation of oxidative stress-related transcription factors in female A/J mouse lung. J Toxicol Environ Health A 73:1288–1297CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tomasello G et al (2014) Dismicrobism in inflammatory bowel disease and colorectal cancer: changes in response of colocytes. World J Gastroenterol 20:18121–18130CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tomoda K et al (2011) Cigarette smoke decreases organic acids levels and population of bifidobacterium in the caecum of rats. J Toxicol Sci 36:261–266CrossRefPubMedGoogle Scholar
  56. Turnbaugh PJ et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031CrossRefPubMedGoogle Scholar
  57. van Eden W et al (1988) Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature 331:171–173CrossRefPubMedGoogle Scholar
  58. Vieira SM, Pagovich OE, Kriegel MA (2014) Diet, microbiota and autoimmune diseases. Lupus 23:518–526CrossRefPubMedPubMedCentralGoogle Scholar
  59. Vogtmann E et al (2015) Association between tobacco use and the upper gastrointestinal microbiome among Chinese men. Cancer Causes Control 26:581–588CrossRefPubMedPubMedCentralGoogle Scholar
  60. Walker AW et al (2011) High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol 11:7CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wang H et al (2012) Side-stream smoking reduces intestinal inflammation and increases expression of tight junction proteins. World J Gastroenterol 18:2180–2187CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wegner N et al (2010) Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunol Rev 233:34–54CrossRefPubMedGoogle Scholar
  63. Wu H-J et al (2010) Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32:815–827CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wu J et al (2016) Cigarette smoking and the oral microbiome in a large study of American adults. ISME J.  https://doi.org/10.1038/ismej.2016.37 Google Scholar
  65. Yu JE et al (2011) High levels of Crohn’s disease-associated anti-microbial antibodies are present and independent of colitis in chronic granulomatous disease. Clin Immunol 138:14–22CrossRefPubMedGoogle Scholar
  66. Yu H, Li Q, Kolosov VP, Perelman JM, Zhou X (2012) Regulation of cigarette smoke-mediated mucin expression by hypoxia-inducible factor-1α via epidermal growth factor receptor-mediated signaling pathways. J Appl Toxicol 32:282–292CrossRefPubMedGoogle Scholar
  67. Zhu Q, Gao R, Wu W, Qin H (2013) The role of gut microbiota in the pathogenesis of colorectal cancer. Tumour Biol 34:1285–1300CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medicine ASheba Medical Center, Tel Aviv UniversityTel AvivIsrael
  2. 2.Sackler School of MedicineRamat AvivIsrael
  3. 3.The Zabludovicz Center for Autoimmune DiseasesThe Chaim Sheba Medical CenterTel-HashomerIsrael
  4. 4.The Dr. Pinchas Borenstein Talpiot Medical Leadership Program 2013Sheba Medical CenterTel-HashomerIsrael
  5. 5.Danek Gertner Institute of Human GeneticsSheba Medical CenterTel-HashomerIsrael
  6. 6.Tel-Aviv UniversityTel-AvivIsrael

Personalised recommendations