Can co-inoculation of Bradyrhizobium and Azospirillum alleviate adverse effects of drought stress on soybean (Glycine max L. Merrill.)?

  • Elijanara Raissa Silva
  • Jardel Zoz
  • Carlos Eduardo Silva Oliveira
  • Alan Mario Zuffo
  • Fábio SteinerEmail author
  • Tiago Zoz
  • Eduardo Pradi Vendruscolo
Original Paper


Harnessing the beneficial potential of plant growth-promoting rhizobacteria may be an alternative strategy to improve plant tolerance to drought stress. The effect of inoculation with Bradyrhizobium japonicum and Azospirillum brasilense either alone or in combination on the plant growth and drought tolerance of soybean [Glycine max (L.) Merrill.] was investigated in this study in greenhouse conditions. Treatments were arranged in a randomized block design in a 3 × 4 factorial: three irrigation regimes [100% of pot capacity—PC (well-watered control), 50% of PC (moderate stress) and 25% of PC (severe stress)] and four inoculation treatments [control (non-inoculated), inoculation with B. japonicum, inoculation with A. brasilense, and co-inoculation with B. japonicum and A. brasilense]. Leaf relative water content, cell membrane stability, root nodulation, plant growth, and morphophysiological indexes were recorded. The inoculation of soybean plants with B. japonicum and A.brasilense either alone or in combination improved leaf membrane stability under drought stress conditions when compared to non-inoculated plants; however, this lower damage to cell membranes was not sufficient to maintain the leaf water content of the plant under drought stress. Plants co-inoculated with B. japonicum and A.brasilense improved the root nodulation under severe drought conditions. Inoculation of B. japonicum and A. brasilense either alone or in combination reduced the pod abortion rate under moderate drought stress, but had no effect under severe drought stress. In summary, the co-inoculation of A. brasilense and B. japonicum alleviate adverse effects limited by drought stress to the growth of soybeans.Author: Please check and confirm that the authors [Elijanara Raissa Silva, Carlos Eduardo Silva Oliveira, Alan Mario Zuffo, Eduardo Pradi Vendruscolo] and their initials have been correctly identified and amend if necessary.The authors were correctly identified.


Glycine max (L.) Merrill. Plant growth-promoting rhizobacteria Inoculation Drought tolerance 



To CNPq (National Council for Scientific and Technological Development) and UEMS (State University of Mato Grosso do Sul) for the scientific initiation scholarship granted to the second author.

Author contributions

ERS, JA, AMZ, and FA designed and carried out the experiment. ERS, JZ, FS, and AMZ collected the data. FS and AMZ performed the analysis. ERS, JZ, CESO, and AMZ contributed to the interpretation of the results. FA wrote the manuscript. TZ and EPV contributed to the final version of the manuscript. All authors provided critical feedback and helped to shape the research, analysis, and manuscript.


  1. Abbasi S, Zahedi H, Sadeghipour O, Akbari R (2013) Effect of plant growth promoting rhizobacteria (PGPR) on physiological parameters and nitrogen content of soybean grown under different irrigation regimes. Res Crops 14:798–803Google Scholar
  2. Agami RA, Medani RA, Abd El-Mola IA, Taha RS (2016) Exogenous application with plant growth promoting rhizobacteria (PGPR) or proline induces stress tolerance in basil plants (Ocimum basilicum L.) exposed to water stress. Int J Agric Environ Res 5:78–92Google Scholar
  3. Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27:197–205CrossRefGoogle Scholar
  4. Assaha DV, Liu L, Ueda A, Nagaoka T, Saneoka H (2016) Effects of drought stress on growth, solute accumulation and membrane stability of leafy vegetable, huckleberry (Solanum scabrum Mill.). J Environ Biol 37:107–114Google Scholar
  5. Bai Y, Zhou-Xiao M, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781CrossRefGoogle Scholar
  6. Benincasa MPM (2003) Análise de crescimento de plantas: noções básicas. FUNEP, Jaboticabal, p 42Google Scholar
  7. Benintende S, Uhrich W, Herrera M, Gangge F, Sterren M, Benintende M (2010) Comparación entre coinoculación con Bradyrhizobium japonicum y Azospirillum brasilense e inoculación simple con Bradyrhizobium japonicum en la nodulación, crecimiento y acumulación de N en el cultivo de soja. Agriscientia 37:71–77Google Scholar
  8. Bulegon LG, Rampim L, Klein J, Kestring D, Guimarães VF, Battistus AG, Inagaki AM (2016) Componentes de produção e produtividade da cultura da soja submetida à inoculação de Bradyrhizobium e Azospirillum. Terra Latinoam 34:169–176Google Scholar
  9. Bulegon LG, Guimarães VF, Klein J, Batisttus AG, Inagaki AM, Offmann LC, Souza AKP (2017) Enzymatic activity, gas exchange and production of soybean co-inoculated with Bradyrhizobium japonicum and Azospirillum brasilense. Aust J Crop Sci 11:888–896CrossRefGoogle Scholar
  10. Casaroli D, Lier QJ (2008) Critérios para determinação da capacidade de vaso. Rev Bras Ciênc Solo 32:59–66CrossRefGoogle Scholar
  11. Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35CrossRefGoogle Scholar
  12. Cerezini P, Kuwano BH, Santos MB, Terassi F, Hungria M, Nogueira MA (2016) Strategies to promote early nodulation in soybean under drought. Field Crops Res 196:160–167CrossRefGoogle Scholar
  13. Chibeba AM, Guimarães MF, Brito OR, Nogueira MA, Araujo RS, Hungria M (2015) Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. Am J Plant Sci 6:1641–1649CrossRefGoogle Scholar
  14. Curá JA, Franz DR, Filosofía JE, Balestrasse KB, Burgueño LE (2017) Inoculation with Azospirillum sp. and Herbaspirillum sp. bacteria increases the tolerance of maize to drought stress. Microorganisms 5:41CrossRefGoogle Scholar
  15. Embrapa (1997) Empresa Brasileira de Pesquisa Agropecuária. Manual de métodos de análise de solo, 2. edn. EMBRAPA/CNPS, Rio de Janeiro, p 212Google Scholar
  16. Fipke GM, Conceição GM, Grando LF, Teleken L, Nunes RL, Ubirajara R, Martin TN (2016) Co-inoculation with diazotrophic bacteria in soybeans associated to urea topdressing. Ciênc Agrotec 40:522–533CrossRefGoogle Scholar
  17. German MA, Burdman S, Okon Y, Kigel J (2000) Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol Fertil Soil 32:259–264CrossRefGoogle Scholar
  18. Gray SB, Brady SM (2016) Plant developmental responses to climate change. Dev Biol 419:64–77CrossRefGoogle Scholar
  19. Gusain YS, Singh US, Sharma AK (2015) Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). Afr J Biotechnol 14:764–773CrossRefGoogle Scholar
  20. Hungria M, Mendes IC (2015) Nitrogen fixation with soybean: the perfect symbiosis? In: Bruijn FJ (ed) Biological nitrogen fixations. Wiley, Ney Jersey, pp 1009–1021CrossRefGoogle Scholar
  21. Hungria M, Nogueira MA, Araujo RS (2015) Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: a new biotechnological tool to improve yield and sustainability. Am J Plant Sci 6:811–817CrossRefGoogle Scholar
  22. Inagaki AM, Guimarães VF, Rodrigues LFOS, Silva MB, Diamante MS, Rampim L, Mioranza TM, Duarte Júnior JB (2014) Phosphorus fertilization associated to inoculation of maize with diazotrophic bacteria. Afr J Agric Res 9:3480–3487CrossRefGoogle Scholar
  23. Juge C, Prévost D, Bertrand A, Bipfubusa M, Chalifour FP (2012) Growth and biochemical responses of soybean to double and triple microbial associations with Bradyrhizobium, Azospirillum and arbuscular mycorrhizae. Appl Soil Ecol 61:147–157CrossRefGoogle Scholar
  24. Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin producing, plant growth promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97:9155–9164CrossRefGoogle Scholar
  25. Lutts S, Kinet JM, Bouharmont J (1996) Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. J Plant Growth Regul 19:207–218CrossRefGoogle Scholar
  26. Mantovani D, Veste M, Boldt-Burisch K, Fritsch S, Koning LA, Freese D (2015) Carbon allocation, nodulation, and biological nitrogen fixation of black locust (Robinia pseudoacacia L.) under soil water limitation. Ann For Sci 58:259–274Google Scholar
  27. Marks BB, Megías M, Nogueira MA, Hungria M (2013) Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium japonicum and Azospirillum brasilense inoculants with the soybean and maize crops. Appl Microbiol Biotechnol 3:1–10Google Scholar
  28. Mertz-Henning LM, Ferreira LC, Henning FA, Mandarino JMG, Santos ED, Oliveira MCND, Nepomuceno AEL, Farias JRB, Neumaier N (2018) Effect of water deficit-induced at vegetative and reproductive stages on protein and oil content in soybean grains. Agronomy 8:1–11Google Scholar
  29. Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131CrossRefGoogle Scholar
  30. Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882CrossRefGoogle Scholar
  31. Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105CrossRefGoogle Scholar
  32. Sangtarash MH (2010) Responses of different wheat genotypes to drought stress applied at different growth stages. Pak J Biol Sci 13:114–119CrossRefGoogle Scholar
  33. Vieira EA, Silva MG, Moro CF, Laura VA (2017) Physiological and biochemical changes attenuate the effects of drought on the Cerrado species Vatairea macrocarpa (Benth.) Ducke. Plant Physiol Biochem 115:472–483CrossRefGoogle Scholar
  34. Vurukonda SSKP, Vardharajula S, Shrivastava M, Skz A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24CrossRefGoogle Scholar
  35. Wellstein C, Poschlod P, Gohlke A, Chelli S, Campetella G, Rosbakh S, Canullo R, Kreyling J, Jentsch A, Beierkuhnlein C (2017) Effects of extreme drought on specific leaf area of grassland species: a meta-analysis of experimental studies in temperate and sub-Mediterranean systems. Glob Change Biol 23:2473–2481CrossRefGoogle Scholar
  36. Xu Z, Zhou G, Shimizu H (2010) Plant responses to drought and rewatering. Plant Signal Behav 5:649–654CrossRefGoogle Scholar
  37. Zoz T, Steiner F, Guimarães VF, Castagnara DD, Meinerz CC, Fey R (2013) Peroxidase activity as an indicator of water deficit tolerance in soybean cultivars. Biosci J 29:1664–1671Google Scholar
  38. Zuffo AM, Bruzi AT, Rezende PM, Bianchi MC, Zambiazzi EV, Soares IO, Ribeiro ABM, Vilela GLD (2016) Morphoagronomic and productive traits of RR soybean due to inoculation via Azospirillum brasilense groove. Afr J Microbiol Res 10:438–444CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Elijanara Raissa Silva
    • 1
  • Jardel Zoz
    • 2
  • Carlos Eduardo Silva Oliveira
    • 2
  • Alan Mario Zuffo
    • 3
  • Fábio Steiner
    • 2
    Email author
  • Tiago Zoz
    • 2
  • Eduardo Pradi Vendruscolo
    • 2
  1. 1.Department of Crop ScienceState University of Santa Catarina, UDESCLagesBrazil
  2. 2.Department of Crop ScienceState University of Mato Grosso do Sul, UEMSCassilândiaBrazil
  3. 3.Department of AgronomyFederal University of Mato Grosso do Sul, UFMSChapadão do SulBrazil

Personalised recommendations